Statement of Andrew G. Helps Delegated toxic metal expert to the UNEP Minamata Convention on Mercury

I have had an involvement with the Lindenow community for the past 4 years. My role with the community has been to conduct baseline water testing of drinking water tanks and farm dams in the area. Over time, my role has increased to advice on the toxicology of various metals and the pollution of drinking water, the air and groundwater.

On the 28th of January 2018 in the company of one of the local farmers, I took baseline samples from 24 domestic drinking water tanks in the Lindenow area. I also took a single sample from a farm dam as a control sample.

These samples were conveyed under a chain of custody in a refrigerated container to Envirolab in Knox. All of the samples were quite pristine but the farm dam water was in excess of the Australian Drinking Water Guidelines (ADWGL) for Antimony which was not an unexpected result for an area with toxic metal ore bodies.

Over the next two years, I carried out two public briefing sessions for the Lindenow communities.

The first of these was at the Lindenow public hall and the attending crowd was larger than the hall capacity. Some of the farmers were very rightly very concerned about the impact that dust containing carcinogenic heavy metals would have on their export vegetable crops.

This meeting ran for about an hour over time and at the finish there was an overwhelming request for a further public meeting where more detailed toxicology data could be provided. A number of the Lindenow vegetable farmers came up to me and asked if I could provide much more detailed toxicology data for them. These farmers had grave concerns that toxic dust from the potential KALBAR mine would contaminate their vegetable crops for both the Australian and Asian export markets.

A number of farmers expressed concern to me that toxic metal pollution of their crops by dust from the proposed KALBAR mine would not only impact their ability to sell vegetable crops into the local and export markets, but damage the "clean and green" image of all Australian vegetable farmers.

A number of the farmers were concerned that if the KALBAR proposal was approved then their farming enterprises, some of which had been in the families for nearly 80 years would be destroyed and the clean green image of the are would be trashed.

I agreed to set up a further meeting and then worked to develop the toxicology data in a format that lay persons could understand.

A second meeting was held in Bairnsdale at the quite large church hall. Again the crowd was standing in the aisles and in the doorway. I was unable to provide the human health risk toxicology answers that the community wanted due to a lack of data on the quantum of various toxic metals in the ore body.

Not long after this meeting, KALBAR released some data from analysis work on sludge and soils carried out by Envirolab (Analysis 217289-B). As this data came from Envirolab it was, as far as I was concerned, high credibility data as I am also a frequent user of Envirolab services.

I plugged this data into my Rare Earth/Toxic Element/Compound calculation template that I originally developed in my role as a delegated toxic metal expert to the UNEP Minamata Convention on Mercury in 2013.

A copy of this spreadsheet is attached as file 8310 Revision 29. The functionality of this spreadsheet allows the assessment of risk using the Hazard Index approach as developed by Nordberg/Fowler in their two volume work "Handbook on the Toxicology of Metals" (HBTOM) fourth edition.

Page 231 Table 1 of the above reference details Potential Health Effects caused by some metals found in human body fluids. A copy of page 231 is attached. All the metals in Table 1 with the single exception of Silver are contained in the KALBAR ore body.

Table 1 is of fundamental importance to the whole KALBAR EES and should have been included and discussed as an absolute priority in the KALBAR Human Health Risk Assessment.

Statement of Andrew G. Helps Delegated toxic metal expert to the UNEP Minamata Convention on Mercury

Some of the metals identified in Table 1 can cause more than 1 bodily health function risk:

Arsenic	All 6 health functions impacted.
Cadmium	3 health functions impacted.
Chromium	3 health functions impacted.
Copper	3 health functions impacted.
Lead	4 health functions impacted.
Thallium	3 health functions impacted
Thorium	Liver dysfunction
Uranium	Renal dysfunction

The American ATSDR (Agency for Toxic Substances and Disease Registry) publishes a Substance Priority List (SPL) which ranks all metals in order of their toxicity.

This ATSDR list gives data based on the nominal 70kg fit healthy young adult male. This nominal fit healthy 70kg male would inhale 50.4 m^3 of air per day.

All my various State level clients in Asia would have mandated a detailed exploration of this toxic dust inhalation issue as matter of routine. All these clients use ATSDR and USEPA substance priority lists as a general operational procedure.

This is an important issue that should have been explored by KALBAR's consultants.

The list provides data on Water GMMC, (Gross Mean Maximum Concentration) for water at mg/L level, Soil at mg/kg, Air at mg/m³ and TDD (Total Daily Dose) (mg/day) again for a fit healthy 70kg male.

In October 2020, at the request of a concerned Lindenow farmer, I carried out further testing in the Lindenow area.

A truncated ATSDR list of the applicable KALBAR ore body metals is attached. Using Envirolab Report # 22941, I have highlighted the metals that we know are in the Kalbar ore body.

There are a number of metals in the KALBAR ore body that have verified toxicology data - for instance Cerium, Strontium and Titanium dioxide.

Cerium (CAS # 7440-45-1) is a metal of particular concern at Lindenow because of the relatively high levels in the water samples - 14 and 66 ug/L. Cerium is radioactive and is a listed carcinogen with a US ATSDR chronic limit of 1 mSv/yr and an ATSDR air carcinogenic target air risk of 0.094 ug/m³.

The US EPA publishes a Toxicological Review of Cerium Oxide and Cerium compounds. This is a document that was released in 2009. Section 5.2 of this document deals with Inhalation Reference Concentrations (RfC).

Section 5.2.1 is very relevant to the proposed KALBAR mine.

Exposure to Cerium compounds in the environment is most likely through Cerium (Ceric) oxide. There are numerous case reports of workers who developed pneumoconiosis or interstitial lung disease associated with the accumulation of cerium particles in the lungs after occupational exposure to cerium fumes or dust."

Cerium is most dangerous in the working environment due to the fact that damps and gases can be inhaled with air.

Strontium (CAS # 7440-24-6) is another metal within the KALBAR ore body that does not have significant verified toxicology data. The Envirolab analysis indicates that in the private dam water at Lindenow it is at between 28 and 69 ug/L. The ATSDR Regional Screening Level (RSL) for residential tap water is at 1200 ug/L.

Strontium in drinking water is a known causal agent for rickets in Children with poor nutrition. This is because Strontium acts as an imperfect surrogate for calcium in the body which interferes with bone mineralization in the developing skeleton.

There have been no known developmental or reproductive studies involving exposure to stable strontium during gestation.

Statement of Andrew G. Helps Delegated toxic metal expert to the UNEP Minamata Convention on Mercury

However, Strontium Chromate is a genotoxic human carcinogen by the inhalation route but the hazard is caused by the hexavalent chromium. Chromium is ubiquitous in the KALBAR ore body.

Titanium (CAS 7440-32-6) is in the KALBAR ore body ranging between 6 and 61 mg/kg and in the water between 76 and 110 ug/L. Titanium is an inhalation risk to children at 0.00008 mg/m³ in the air. This figure demonstrates that the risk to the Woodglen primary school some 4km from the proposed mine site and the Lindenow primary school is very high.

Next on the toxicity list at Lindenow is Lanthanum which runs between 9 and 27 mg/kg. Lanthanum is an air toxicant at 0.00018 mg/m³. The Theoretical Daily Dose (TDD) for a fit healthy 70kg male is 0.00268 mg/day. If you adopt an average level of 18 mg/kg in the soil at Lindenow then the level is 6,716 times the safe limit (Reference HBTOM page 907). My primary concerns would be children engaging in Pica events. <u>There is no effective therapeutic chelator to remove Lanthanum from the</u> <u>human body.</u>

The KALBAR ore body contains Gallium (CAS 7440-55-3) at between 2 and 12 mg/kg. Gallium is highly toxic and a suspected carcinogen, has an air toxic level of 0.00001 mg/m^3 and a Theoretical daily dose of 0.00011 mg/day. If you presume an average level of 7 mg/kg (the average of our 2 samples) in the dust blowing out of the mine then you have Gallium at 700,000 times the safe limit.

The KALBAR ore body contains Lead (CAS 7439-92-1) at between 4 and 29 mg/kg. Lead is highly toxic and has an air toxic level of 0.00243 mg/m^3 and a Theoretical daily dose of 0.33152 mg/day. If you presume an average of 16.5 mg/kg (the average of our 2 samples) in the dust blowing out of the mine then you have lead at 6,790 time the safe limit.

The KALBAR ore body contains Sulphur (CAS 7704-34-9) (US speak Sulfur) at between 31 and 5700 mg/kg. Sulphur is toxic and has an air toxic level of 0.00122 mg/m³ and a Theoretical daily dose of 0.01829 mg/day.

If you presume an average for Sulphur of 1510 mg/kg (the average of our 4 samples) then you have sulphur in the dust blowing out of the mine at 1.23 million times the safe limit.

The KALBAR ore body contains RADNUCS (Radionuclides) the most obvious of which are Thorium, Uranium and Yttrium.

Thorium is at an average of 5 mg/kg. At this time we have not speciated the Thorium but it is likely to be the CAS 744029-1 variant. There is no safe level of Thorium in the environment.

Uranium is at an average of a little over 1 mg/kg and it is likely to be the CAS 740-61-1 variant. This figure is a normal background level for Uranium in this part of Gippsland.

Yttrium (CAS 7440-65-5) is in the ore body and average of 8.8 mg/kg. Yttrium has an Air GMMC of 0.00001 mg/m³ and a TDD of 0.0012 mg/day. Yttrium is also in the water at an average of 19.85 ug/L. Yttrium has a Zero water GMMC and an Air GMMC at 0.00002 mg/m³.

Experience in Asia with similar ore bodies indicates that these levels will increase with mine pit depth and quantum.

The key ATSDR Substance Priority List (SPL) toxicity data should be used as baseline data if this mine proposal is eventually approved.

RARE EARTH ELEMENTS.

We have a list of 16 Rare Earth Elements that are contained in the KALBAR ore body. Cerium, Lanthanum and Yttrium are line items in this list. Whilst the list quotes "% at Fingerboards" we do know the base number for calculating the percentage. This is important risk management data if it could be made available.

COMMENTS AND RECOMMENDATIONS.

- **1.** This mine proposal, in its current format with dangerously incomplete, misleading and non existent technical reports should not be approved under any circumstances.
- **2.** These deficiencies are such that it would take a significant amount of effort and money and require KALBAR to hire a report writing team that is more up to date with metals toxicology to

Statement of Andrew G. Helps

Delegated toxic metal expert to the UNEP Minamata Convention on Mercury

bring the proposal data pack up to Worlds best practice standard (which it should be).

- **3.** I would be happy to provide advice to the Panel on the necessary extra reports and investigations that need to be completed before this proposal could be regarded as both complete and technically complete.
- **4.** The seriously deficient due-diligence process for mining licence applications and rehabilitation bonds in Victoria is in urgent need of upgrading to modern standards and this task needs to be completed before the KALBAR Lindenow project is permitted to proceed.

It is interesting to note that in several Asian countries these days this type of report is generated by a University from a distant province and not by the conflicted proponents!

5. Should this proposal be approved then the rehabilitation bond applied to the project would need to be in the region of \$A240 to \$A280 million to provide an adequate buffer for the vast range of remediation issues that will be required.

Thank you for giving me the opportunity to provide comment on the toxic metal issues with this proposal.

Andrew G. Helps

y Air Transport and Fate, Mercur	v in Products				? Aquati	c Toxicity					TABLE #1															
: Andrew Helps	, minioudots.				Conversio								HI =	QTY Chemical	+QTY Chemical TDD	+QTY Chemical TDD	<u>.</u>									
KALBAR Resources Lind					To Conver	t concentrati		5ºC) from PPM to mg mpound) / (24.45) e	·		7/10/2020 = 4.97 mg/r			TY Chemical in m DD in mg/day		Note* A Hazard Index i				id or reme	ediation					
Rare Earth/Toxic Eleme File 8310 Revision 29	nt/Compound	Calculatio		re Earths in Ita	lics						ATSDR &	ATSDR &			PEM M+E		PDRV - Prioritis	ed Dose Respor	nse value		KALBAR D	АТА				
10th October 2020 CHEMICAL ELEMENTS/COMPOUND mg/kg - ug/kg	Specific S: Gravity	Group	Formula Weight (Molecular	Rated as	HBTOM* ATSDF Ref Rank Pages	emperatur	Solubility in 100 parts Cold Water Formular	ATSDR MRL's Chronic mg/kg/day		Soil	USEPA Resident Air Carcinogenia	USEPA Resident Tapwater	Resident	Vic EPA SEPP 240 Air ug/m ³	Vic EPA SEPP AQM Pub 1191 ug/m ³	ATSDR SPL THEORETICAL Daily Dose TDD (mg/day)	USEPA PDRV* Non Cancer	CHRONIC IN Data Source				Soil		Hazard Inde Leach FT Sludge (TDD)		Leach Soi (TDI
ing/kg - ug/kg			Weight)	Carcinogen			Dependent D= Dissolves	ing/kg/uay	ing/kg		Target Risk ug/m ³	ing/E	ug/L	ug/m	ug/m	(Fit 70kg male)	Non cancer			micrograms		ing/kg	iiig/kg	(100)	(100)	(ID
Aluminium (Al)	2.70 g/cm ³			Carcinogen			i	1	7700		0.52	2000		47		10.323	Neurological	ATSDR	a a 4 3		4500	260	260	435.9	25.2	25
Antimony (Sb) Arsenic (see note 1)	6.69 g/cm ³ 5.73 g/cm ³		121.76 299.64	Carcinogen Carcinogen			i	0.0003 0.0003	3.1 0.68	100	0.021 0.00065	0.78 0.052	3 10	17 71.278	0.003	0.103992 0.071278	0.2ug/m ³ 0.015ug/m ³	IRIS IARC 2B Cal IARC 1	0.2ug/m ³ 0.015ug/m ³	0.2 0043ua/r	<0.5 35	<0.5 4.40	0.50 11.00	491.0	61.70	4.8 154
Arsine (gaseous AsH3)	2.769 g/cm ³		77.93	Carcinogen		285	20cc		0.027		0.005	0.007					0.05 ug/m ³	IARC 1	0.0043ug/m	0.0043						
Barium	3.51 g/cm ³		137.36	Consinence	134 625-633	725	D	0.2	1500	(0	0.00108	0.51499	(0.0	17		0.61652	$0.01 \mu g / m^3$	IRIS IARC 1	0.0024ug/m	3 0 0001	28.00	5.80	32	45.4	9.4	51
Beryllium (glucinum) Bismuth (Bi)	1.85 g/cm ³ 9.72 g/cm ³		9.02 209.00	Carcinogen	43 636-651 655-663	1278 271.3	i	0.002	2.64	60	0.00000	2.50	60.0	0.007		0.0078	0.01 ug/m³	IRIS IARC I	0.0024ug/m	0.0024	<0.5 <1	<0.5 <1	<1 <1			
Cadmium (Cd)	8.65 g/cm ³	Group 12	112.41	Carcinogen			i	0.0005	7.1	20	0.00001	0.92	2	0.033		0.045127	0.01 ug/m3	ATSDR	0.0018ug/m	0.0018	<0.1	<01.	<0.1			
Calcium(Ca)	1.55 g/cm ³ 6.71 g/cm ³		40.08	Commented	F70 101 100	842	D	1			5.892442	103.777				195.6125					380	44	170	1.94	0.22	0.8
Ceric Oxide (Cerium)Ce0 ₂ Chromium compounds (Cr			172.13 52.01	Carcinogen	570 101-102 66 717-739		i	1 mSv/yr 0.0009			0.094 0.00001			17		0.00263					81	10	58	30798	3802	220
Cobalt (Co)	8.85 g/cm ³		52.01 58.94		52 743-759		i	1 mSv/yr	2.3	100	0.000031	0.6		.,		0.67523	0.1 ug/m ³	ATSDR			1.7	<0.5	<1	2.52	2002	
Copper (Cu)	0 50 (3	Group 11	63.57		125 765-782		i	0.01	310	6000		80	2000	33		0.47242					17.00	1.80	12	36	4	2
Dysprosium Dy20 ₃ Erbium Er20 ₃	3	Group 3 Group 12	162.5 167.26	Suspected Suspected		2567 1529	1																			
Europium Eu0 3	F OF3	Group 3	151.96	Suspected	575	1800	i																			
Gadollinium Gd2p0 3	3	Group 3	157.25	Suspected		3545	i																			
Gallium Bromide (GaBr 3)	5.92 g/cm ³		309.47	Carcinogen	787-795	302	i				0.000007					0.00011					6.60	1.10	23	60000	10000	209
Germanium	5.32 g/cm ³ 8.80 g/m ³		72.63	Currented	800-813		i																			
Holmium Ho20 ₃ Iron	7.87 g/cm ³	Group 12 Group 8	164.93 55.85	Suspected	878-902	1474 420	i		32919		0.01626	11.29				18.07					12000.00	1300.00	5000	664.08	71.94	27
Lanthanum -138	6.17 g/m ³		138.92	Suspected	711 903-908		i		02717		0.00018	0.00027				0.002682					49.00	11.00		18270	4101	111
Lead - not 210 (Pb)	11.34 g/cm ³		430.42	Carcinogen		710	i		400	300		15	10	3		0.330938	0.15 ug/m ³	OAQPS			10	1.9	18	30	6	5
Lithium Oxide Li ₂ O Lutetium -176	0.53 g/cm ³ 9.84 g/cm ³		29.88 174.99	Suspected Suspected	344 969-974	2600 1936	to LiOH i		104.51			0.3835				0.404424		ATSDR			2.00	1.00	1.00	5	2	1
Magnesium	3.58 g/cm ³		24.32	Suspected		520	i		6317.87		0.0907	33.3369				35.96134										
Manganese	7.47 g/cm ³		54.93		140 975-1005	0	D	0.3 ug/m3	180	3800	0.05	43	500			1.61855	0.03 ug/m ³	ATSDR			23	6	44	14	4	2
Mercury Methyl Mercury	13.55 g/cm ³ 215.63g/mol		200.61 417.22	Suspected Suspected	3 014-106 120 448-450	•		0.0002 mg/m3 0.0003	0.94 0.78	40		0.063 0.2	1	3.3		0.051981	0.3ug/m ³ 0.1 ug/m ³	IRIS IRIS	0.1 ug/m ³	0.1	0.02	0.01	<0.01	0.4	0.19	
Methyl Mercury Molybdenum	10.22 g/cm ³		417.22 95.95	Suspected	326 077-110	•	i i	0.00003 0.00004 mg/m ³	39			10	50			0.2412	0.2 ug/m ³	IARC 2B	0.1 ug/m	0.1	1.2	0.50	1	5	2.1	5.0
Nickel	8.90 g/cm ³	Group 10	58.69	Carcinogen	57 091-110	950+	i	0.00009 mg/m ³	84	400		20	20	0.33		0.38969	0.09 ug/m ³	ATSDR/CAL	0.00024 ug/n	n [:] 0.00024	4	0.7	3.1	10.3	1.8	8
Neodymium 144 Palladium	7.00 g/cm ³ 12.99 g/cm ³		144.27 106.7	Suspected Suspected	173 113-112	1021 2963	D				0.012000					0.00018										
Platinum	21.45 g/cm ³		195.23	Suspected	1125-113		i				0.012000					0.00018										
Praseodymium Pro ₆	6.78 g/cm³		140.92	Suspected		3512	D																			
Radium 222 , 226 or 228		Group 2	226.05	Carcinogen		1500	i				5pCi total co	<mark>mbined per</mark>	<mark>litre of wa</mark> te	er												
Radium Bromide Rhodium	5.79 g/cm ³ 8.85 g/cm ³		385.88 102.91		1143-117	1	i																			
Rubidium	1.63 g/cm ³		85.48	Suspected			D				0.00001					0.000091										
Samarium 147 (Chloride)	7.54 g/cm^3		150.43	Suspected	504			EPA Doc EPA/690/R	-09/050F																	
<i>Scandium Sc2O</i> ₃ Selenium	2.99 g/cm ³ 4.50 g/cm ³		45.1 631.68	Suspected Suspected	584 146 176-120	950+	NK i	0.005 mh/kg/day	5.36	200	0.00002	0.03657	10			0.03778	20 ug/m ³	CAL			0.3	<0.1	0.4	7.94		10.
Silica PM _{2.5} Faction)	2.33 g/cm ³		60.06	Carcinogen	146 178-120	780	i	5.005 min/kg/udy	430000	200	0.00002	0.03857	10		3	Annual av	20 09/11	UAL			0.0	<u>\</u> 0.1	0.4	1.74		10.
Sulphur (%)	2.067 g/cm ³		32.06			392	i				0.00122					0.01829										
Strontium SrO (Stable)	2.64 g/cm ³ 6.24 g/cm ³		87.63	Carcinogen	455	768.85	D	2 mg/kg/day			0.00000					0.00020					8	1	4			
Tellurium Terbium Tb40 ₇	6.24 g/cm ⁻ 8.27 g/cm ³		127.61 159.2	Carcinogen Suspected	1218-122	449.51 1356	ı NK				0.00003					0.00039										
Thallium	11.86 g/cm ³	Group 13			279 229-123		i		6.0646		0.00007	0.01355				0.01579					<0.5	<0.5	<0.5			
Thorium 229	11.73 g/cm ³		232.12	Carcinogen	227	270	i											IARC I	.000185 pCi/	n³	9.8	1.0	120			
<i>Thulium Tm2O</i> ₃ Titanium	9.33 g/cm ³ 4.54 g/cm ³		169.4 47.9	Suspected	310 287-129	1950 460	i	0.0001 mg/m3	14000			0.021				2.271688	0.01 ug/m ³	ATSDR	Respiratory		230	100	350	101.25	44.02	154
Tin	4.54 g/cm 7.29 g/cm ³		47.9 118.7	carcinogen	310 287-129 307 242-127		i	0.0001 mg/m3 0.3 mg/kg/day	4700			1200	1200			0.09981	o.or ug/iii	AIJUK	кезрнаюгу		230 1.7	< 0.5	350 1.7	101.25	4 4.02	154
Tungsten	19.25 g/cm3	Group 6	183.92		1297-130	950	i														<1	<1	<1			
Uranium 234 Vapadium (86%)	19.05 g/cm ³ 6.10 g/cm ³		238.07		97 308-133		i i	0.00004 mg/m3	20			0 /				0 102040		CAL		0.00034	3	0.4 17	9	1056.54	120 47	674
Vanadium (86%) Ytterbium Yb2O 3	6.95 g/cm^3		50.95 173.04	Carcinogen Suspected		500	NK	0.0001 mg/m3	39			8.6				0.123043		CAL		0.00034	130	17	83	1030.54	130.10	074
Yttrium Y2O ₃	4.47 g/cm ³		88.92	Suspected			D		0.104881		0.000006	J				0.000118										
Zinc	7.14 g/cm ³		65.38		75 369-138		i	0.3 mg/kg/day	2300	7400		600		33		1.96084					16	2.3	11		1.17	5.
Zirconium	6.51 g/cm ³ 0.69g/cm ³	Group 4	91.22 179.16	Carcinogen Reproductive		20	i NK		0.63 0.27	250		0.16 0.15	0.000022 80	170	9*	0.00032 1.3058					14	2.0	2.0	43750.0	6250.00	625
Hydrogen Cyanide PM10	0.079/011		177.10	Reproductive				ICPMS Analysis	0.27	200		0.15	00	170	50ug/m ³	24 hour av										
PM2.5				Carcinogen				ICPMS Analysis							25ug/m ³		Annual Average									
Radionuclides (Uranium)	18.7 g/cm ³	Group 3	238.03	Carcinogen	102 307-134	5	i							(A. 1	>00001ug/m ³	wable 222)			.000185 pCi/		00.40			155751	24525	350
														(AS IOW 2	s reasonably achie	vabic :::()		101	tal REE Pack							
1 USEPA Residential leve	Average fit l	nealthy 70	kg male i	nhales 50.4	m3 a day															Mg/ton	89400	17100	450000			
1 USEPA Residential leve HBTOM - Handbook of t	_		-															ckage Price (S			89.40					

CERTIFICATE OF ANALYSIS 22941

Client Details	
Client	Andrew Helps
Attention	Andrew Helps
Address	VIC

Sample Details	
Your Reference	F01-11 Lindenow
Number of Samples	2 Water, 3 Sand, 1 Sludge
Date samples received	14/10/2020
Date completed instructions received	14/10/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details					
Date results requested by	16/10/2020				
Date of Issue	20/10/2020				
Reissue Details	This report supersedes 22941_R00 due to addition of Sulphur on all samples.				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *					

<u>Results Approved By</u> Chris De Luca, Operations Manager

Authorised By

Pamela Adams, Laboratory Manager

Acid Extractable metals in soil					
Our Reference		22941-2	22941-3	22941-5	22941-6
Your Reference	UNITS	L-26	L-27	L-29	L-30
Date Sampled		13/10/2020	13/10/2020	13/10/2020	13/10/2020
Type of sample		Sand	Sand	Sludge	Sand
Date digested	-	14/10/2020	14/10/2020	14/10/2020	14/10/2020
Date analysed	-	15/10/2020	15/10/2020	15/10/2020	15/10/2020
Silver	mg/kg	<1	<1	<1	<1
Aluminium	mg/kg	13,000	4,700	28,000	14,000
Antimony	mg/kg	<7	<7	<7	<7
Arsenic	mg/kg	5	<4	8	4
Boron	mg/kg	<3	<3	15	<3
Barium	mg/kg	18	15	58	22
Beryllium	mg/kg	<1	<1	<1	<1
Bismuth	mg/kg	<1	<1	<1	<1
Cadmium	mg/kg	<0.4	<0.4	<0.8	<0.4
Cobalt	mg/kg	2	1	8	3
Chromium	mg/kg	19	8	34	20
Copper	mg/kg	<1	<1	570	<1
Caesium*	mg/kg	<1	<1	<1	<1
Gallium	mg/kg	4	2	13	6
Gold*	mg/kg	<1	<1	<1	<1
Iron	mg/kg	30,000	12,000	37,000	26,000
Lanthanum*	mg/kg	16	9	27	15
Lead	mg/kg	10	4	29	11
Lithium	mg/kg	4	1	11	5
Manganese	mg/kg	33	10	190	31
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1
Molybdenum	mg/kg	<1	<1	<1	<1
Nickel	mg/kg	4	1	15	4
Selenium	mg/kg	<2	<2	<2	<2
Strontium	mg/kg	5	2	31	4
Sulphur	mg/kg	150	31	5,700	160
Tellurium	mg/kg	<1	<1	<1	<1
Thallium	mg/kg	<2	<2	<2	<2
Tin	mg/kg	<1	<1	2	<1
Titanium	mg/kg	7	9	61	6
Thorium	mg/kg	6	3	5	6
Uranium	mg/kg	<1	<1	2	1
Vanadium	mg/kg	50	28	62	54
Yttrium*	mg/kg	7.6	4.8	15	7.8

Acid Extractable metals in soil					
Our Reference		22941-2	22941-3	22941-5	22941-6
Your Reference	UNITS	L-26	L-27	L-29	L-30
Date Sampled		13/10/2020	13/10/2020	13/10/2020	13/10/2020
Type of sample		Sand	Sand	Sludge	Sand
Zinc	mg/kg	4	1	280	3

Moisture					
Our Reference		22941-2	22941-3	22941-5	22941-6
Your Reference	UNITS	L-26	L-27	L-29	L-30
Date Sampled		13/10/2020	13/10/2020	13/10/2020	13/10/2020
Type of sample		Sand	Sand	Sludge	Sand
Date prepared	-	14/10/2020	14/10/2020	14/10/2020	14/10/2020
Date analysed	-	15/10/2020	15/10/2020	15/10/2020	15/10/2020
Moisture	%	2.9	14	88	7.3

All metals in water - total			
Our Reference		22941-1	22941-4
Your Reference	UNITS	L-25	L-28
Date Sampled		13/10/2020	13/10/2020
Type of sample		Water	Water
Date prepared	-	14/10/2020	14/10/2020
Date analysed	-	14/10/2020	14/10/2020
Silver-Total	µg/L	<1	<1
Aluminium-Total	µg/L	12,000	43,000
Arsenic-Total	µg/L	3	4
Boron-Total	µg/L	30	60
Barium-Total	µg/L	37	150
Beryllium-Total	µg/L	<0.5	3
Bismuth-Total	µg/L	<1	<1
Cadmium-Total	µg/L	<0.2	<0.2
Cerium-Total*	µg/L	14	66
Cobalt-Total	µg/L	1	6
Chromium-Total	µg/L	11	48
Copper-Total	µg/L	<2	5
Caesium-Total*	µg/L	<1	2
Gallium-Total	µg/L	3	15
Mercury-Total	µg/L	<0.05	<0.05
Iron-Total	µg/L	8,100	30,000
Lanthanum-Total	µg/L	9	43
Lithium-Total	µg/L	3	15
Manganese-Total	µg/L	120	93
Molybdenum-Total	µg/L	<1	<1
Niobium-Total*	µg/L	2.7	2.4
Nickel-Total	µg/L	4	12
Lead-Total	µg/L	6	30
Rubidium-Total*	µg/L	8	31
Rhenium-Total*	µg/L	<1	<1
Antimony-Total	µg/L	<1	<1
Scandium-Total*	µg/L	<1	8
Selenium-Total	µg/L	<1	2
Tin-Total	µg/L	2	<1
Strontium-Total	µg/L	28	69
Tantalum-Total*	µg/L	<1	<1
Tellurium-Total*	µg/L	<0.5	<0.5
Thorium-Total	µg/L	1	5.0
Thallium-Total	μg/L	<1	<1

All metals in water - total			
Our Reference		22941-1	22941-4
Your Reference	UNITS	L-25	L-28
Date Sampled		13/10/2020	13/10/2020
Type of sample		Water	Water
Titanium-Total	μg/L	110	76
Uranium-Total	μg/L	0.6	3.5
Vanadium-Total	μg/L	13	53
Tungsten-Total	μg/L	<1	<1
Yttrium-Total*	μg/L	6.7	33
Zinc-Total	µg/L	9	25

Metals in Waters - Total			
Our Reference		22941-1	22941-4
Your Reference	UNITS	L-25	L-28
Date Sampled		13/10/2020	13/10/2020
Type of sample		Water	Water
Date prepared	-	20/10/2020	20/10/2020
Date analysed	-	20/10/2020	20/10/2020
Sulfur -Total	mg/L	2.0	3.6

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105 deg C for a minimum of 12 hours.
Metals-020 ICP-AES	Determination of various metals by ICP-AES.
Metals-021 CV-AAS	Determination of Mercury by Cold Vapour AAS.
Metals-021 CV-AAS	Determination of Mercury by Cold Vapour AAS.
Metals-022 ICP-MS	Determination of various metals by ICP-MS.

QUALITY CON	TROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date digested	-			14/10/2020	3	14/10/2020	14/10/2020		14/10/2020	
Date analysed	-			15/10/2020	3	15/10/2020	15/10/2020		15/10/2020	
Silver	mg/kg	1	Metals-020 ICP- AES	<1	3	<1	<1	0	98	
Aluminium	mg/kg	10	Metals-020 ICP- AES	<10	3	4700	3600	27	98	
Antimony	mg/kg	7	Metals-020 ICP- AES	<7	3	<7	<7	0	102	
Arsenic	mg/kg	4	Metals-020 ICP- AES	<4	3	<4	<4	0	108	
Boron	mg/kg	3	Metals-020 ICP- AES	<3	3	<3	<3	0	89	
Barium	mg/kg	1	Metals-020 ICP- AES	<1	3	15	11	31	104	
Beryllium	mg/kg	1	Metals-020 ICP- AES	<1	3	<1	<1	0	109	
Bismuth	mg/kg	1	Metals-020 ICP- AES	<1	3	<1	<1	0	91	
Cadmium	mg/kg	0.4	Metals-020 ICP- AES	<0.4	3	<0.4	<0.4	0	104	
Cobalt	mg/kg	1	Metals-020 ICP- AES	<1	3	1	1	0	103	
Chromium	mg/kg	1	Metals-020 ICP- AES	<1	3	8	7	13	103	
Copper	mg/kg	1	Metals-020 ICP- AES	<1	3	<1	<1	0	101	
Caesium*	mg/kg	1	Metals-020 ICP- AES	<1	3	<1	<1	0	100	
Gallium	mg/kg	1	Metals-020 ICP- AES	<1	3	2	2	0	115	
Gold*	mg/kg	1	Metals-020 ICP- AES	<1	3	<1	<1	0	99	
Iron	mg/kg	10	Metals-020 ICP- AES	<10	3	12000	13000	8	99	
Lanthanum*	mg/kg	1	Metals-020 ICP- AES	<1	3	9	8	12	111	
Lead	mg/kg	1	Metals-020 ICP- AES	<1	3	4	4	0	98	
Lithium	mg/kg	1	Metals-020 ICP- AES	<1	3	1	1	0	90	

QUALITY CONT	ROL: Acid E	Extractab	le metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Manganese	mg/kg	1	Metals-020 ICP- AES	<1	3	10	12	18	105	[NT]
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	3	<0.1	<0.1	0	110	[NT]
Molybdenum	mg/kg	1	Metals-020 ICP- AES	<1	3	<1	<1	0	100	[NT]
Nickel	mg/kg	1	Metals-020 ICP- AES	<1	3	1	1	0	99	[NT]
Selenium	mg/kg	2	Metals-020 ICP- AES	<2	3	<2	<2	0	100	[NT]
Strontium	mg/kg	1	Metals-020 ICP- AES	<1	3	2	2	0	107	[NT]
Sulphur	mg/kg	10	Metals-020 ICP- AES	<10	3	31	33	6	105	[NT]
Tellurium	mg/kg	1	Metals-020 ICP- AES	<1	3	<1	<1	0	98	[NT]
Thallium	mg/kg	2	Metals-020 ICP- AES	<2	3	<2	<2	0	97	[NT]
Tin	mg/kg	1	Metals-020 ICP- AES	<1	3	<1	<1	0	99	[NT]
Titanium	mg/kg	1	Metals-020 ICP- AES	<1	3	9	9	0	108	[NT]
Thorium	mg/kg	2	Metals-022 ICP-MS	<2	3	3	2	40	106	[NT]
Uranium	mg/kg	1	Metals-022 ICP-MS	<1	3	<1	<1	0	107	[NT]
Vanadium	mg/kg	1	Metals-020 ICP- AES	<1	3	28	31	10	102	[NT]
Yttrium*	mg/kg	1	Metals-020 ICP- AES	<1	3	4.8	4.5	6	98	[NT]
Zinc	mg/kg	1	Metals-020 ICP- AES	<1	3	1	<1	0	102	[NT]

QUALIT	Y CONTROL: All r	netals in	water - total			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			16/10/2020	[NT]		[NT]	[NT]	16/10/2020	
Date analysed	-			16/10/2020	[NT]		[NT]	[NT]	16/10/2020	
Silver-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	105	
Aluminium-Total	µg/L	10	Metals-022 ICP-MS	<10	[NT]		[NT]	[NT]	106	
Arsenic-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	105	
Boron-Total	µg/L	20	Metals-022 ICP-MS	<20	[NT]		[NT]	[NT]	107	
Barium-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	106	
Beryllium-Total	µg/L	0.5	Metals-022 ICP-MS	<0.5	[NT]		[NT]	[NT]	103	
Bismuth-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	119	
Cadmium-Total	µg/L	0.1	Metals-022 ICP-MS	<0.1	[NT]		[NT]	[NT]	105	
Cerium-Total*	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	102	
Cobalt-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	105	
Chromium-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	102	
Copper-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	106	
Caesium-Total*	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	104	
Gallium-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	103	
Mercury-Total	µg/L	0.05	Metals-021 CV-AAS	<0.05	[NT]		[NT]	[NT]	85	
Iron-Total	µg/L	10	Metals-022 ICP-MS	<10	[NT]		[NT]	[NT]	103	
Lanthanum-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	101	
Lithium-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	105	
Manganese-Total	µg/L	5	Metals-022 ICP-MS	<5	[NT]		[NT]	[NT]	105	

QUALITY C	ONTROL: All	metals ir	ı water - total			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Molybdenum-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	104	[NT]
Niobium-Total*	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	111	[NT]
Nickel-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	104	[NT]
Lead-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	104	[NT]
Rubidium-Total*	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	105	[NT]
Rhenium-Total*	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	108	[NT]
Antimony-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	110	[NT]
Scandium-Total*	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	108	[NT]
Selenium-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	104	[NT]
Tin-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	106	[NT]
Strontium-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	103	[NT]
Tantalum-Total*	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	102	[NT]
Tellurium-Total*	µg/L	0.5	Metals-022 ICP-MS	<0.5	[NT]		[NT]	[NT]	102	[NT]
Thorium-Total	µg/L	0.5	Metals-022 ICP-MS	<0.5	[NT]		[NT]	[NT]	95	[NT]
Thallium-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	104	[NT]
Titanium-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	103	[NT]
Uranium-Total	µg/L	0.5	Metals-022 ICP-MS	<0.5	[NT]		[NT]	[NT]	101	[NT]
Vanadium-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	102	[NT]
Tungsten-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	107	[NT]
Yttrium-Total*	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	101	[NT]

QUALITY CO	NTROL: All	metals in	water - total		Duplicate Spike Recovery							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]		
Zinc-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]			[NT]	106	[NT]		

QUALITY CC	NTROL: Me	tals in Wa	aters - Total			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			20/10/2020	[NT]		[NT]	[NT]	20/10/2020	
Date analysed	-			20/10/2020	[NT]		[NT]	[NT]	20/10/2020	
Sulfur -Total	mg/L	0.5	Metals-020 ICP- AES	<0.5	[NT]	[NT]	[NT]	[NT]	110	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

METALS: The PQL has been raised for Cadmium & Copper due to the sample matrix requiring dilution.

PQL has been raised for Cadmium due to the high moisture content in the sample, resulting in a high dilution factor.

UNEP Global Mercury Partnership

Author: Andrew Helps

Partnership Areas: Mercury in Gold Mining, Mercury Supply and Storage, Mercury Air Transport and Fate, Mercury in Products.

DATA From Envirolab Analysis #22941 dated 16/10/2020

Conversion Factors To Convert concentrations in air(at 25°C) from PPM to mg/m³ = 6/12/2020 HI = +QTY Chemical TDD

							To Convert co	oncentrations in air(at 2	5 ⁰ C) from PPM to	$mg/m^3 =$		6/12/2020															
	KALBAR Resource	es Linden	ow (Vic	:) Project			(ppm) x (mo	ecular weight of the co	mpound) / (24.45	6) e.g for Antimony	1 ppm = 4.97 m	ıg/m³.)			Note*												
															A Hazard Inde		-	vestigation and	or remediation	n							
	Rare Earth/Toxi	ic Eleme	nt/Cor	npound (Calculation 1	rempl	late	Lindenow Te	sting on 1	3/10/2020						PDRV - Prioriti	ised Dose Respo	nse Value		13/10/2020		13/10/2020		13/10/2020	13/10/2020	13/10/2020	13/10/2020
	Revision 33				Rare Earths in Itali	ics						ATSDR &	ATSDR &								Exceedence	Water	Exceedence	Sand	Sand	Sand	Sand
	6th February 2021 CHEMICAL	Cassifie	Matel	Formula	California	ATCOR	HBTOM*	Ignition	Solubility	ATSDR MRL's	Australia Residential	USEPA	USEPA	Australia	ATSDR SPL	UCEDA	CHRONIC IN		UCEDA	L-25	USEPA	L-28	USEPA	L26	L27	L29	L30
	ELEMENTS/COMPOUNDS	Specific S: Gravity	Metal Group		California Rated as	ATSDR Rank		Temperature (Dust ⁰ C)	in 100 parts Cold Water	Chronic	Soil	Resident Air	Resident Tapwater	Resident Tapwater	THEORETICAL Daily Dose	USEPA PDRV*	Data Source	USEPA PDRV*	USEPA PDRV*	ug/L	Tapwater	ug/L	Tapwater	mg/kg	mg/kg	mg/kg	mg/kg
	mg/kg - ug/kg	,		(Molecular	Carcinogen		. uguo	(2400 0)	Formular	mg/kg/day	mg/kg	Carcinogenic	mg/L	ug/L	TDD (mg/day)	Non Cancer		Cancer	Cancer								
				Weight)	-				Dependent		(HIL A)	Target Risk	-	-	(Fit 70kg male)												
									D= Dissolves			ug/m ³							micrograms								
1	Aluminium (Al)	2.70 g/cm ³ 6.69 g/cm ³			Carcinogen	183 232	549-560 565-572	650 420	1	1 0.0003		0.52	2000 0.78	2	10.323	Neurological 0.2ug/m ³	ATSDR IRIS IARC 2B	0.2ug/m ³	0.2	12000	6	43000		13000 <7	4700 <7	28000 <7	14000 <7
3	Antimony (Sb) Arsenic (see note 1)	5.73 g/cm ³			Carcinogen Carcinogen	1	582-610	815	-	0.0003	100	0.021 0.00065	0.78	10	0.103992 0.071278	0.20g/m ³	Cal IARC 2D	0.20g/m ³	0.2 0.0043ug/m ³	<1 3	57.69	<1 4.00		5.00	<4	8.00	4.00
4	Boron	2.47 g/cm ³	-		curcinogen	-	502 010	015	•	0.0005	100	2.1	400	10	0.071270	0101049/111	cui pirce i	0101049/11	01001003,111	30	0.08	60.00		<3	<3	15.00	<3
5	Arsine (gaseous AsH3)	2.769 g/cm			Carcinogen	1	615	285	20cc			0.005	0.007			0.05 ug/m ³	IARC 1	0.0043ug/m ³	0.0043	50	0.00	00.00		?	?	20.00	?
6	Barium	3.51 g/cm ³	-			134	625-633	725	D	0.2		0.00108	0.51499		0.61652	5.		2.		37.00	71.85	150.00		18	15.0	58.0	22.0
7	Beryllium (glucinum)	1.85 g/cm ³			Carcinogen	43	636-651	1278	i	0.002	60	0.00000	2.50	60.0	0.0078	0.01 ug/m ³	IRIS IARC 1	0.0024ug/m ³	0.0024	<0.5		3.00		<1	<1	<1	<1
8	Bismuth (Bi)	9.72 g/cm ³	Group 4	209.00			655-663	271.3	i											<1		<1		<1	<1	<1	<1
9	Cadmium (Cd)	8.65 g/cm ³	Group 12	2 112.41	Carcinogen	7	668-708	1040	i	0.0005	20	0.00001	0.92	2	0.045127	0.01 ug/m3	ATSDR	0.0018ug/m ³	0.0018	<0.2		<0.2		<0.4	<0.4	<0.8	<0.4
11	· · · ·	6.71 g/cm ³	Group 3	172.13	Suspected	570	101-102	3500	i	1 mSv/yr		0.094								14.00		66.00					
	Chromium compounds (Cr)	,			Carcinogen	66	717-739	580	i	0.0009		0.00001			0.00263					11		48					
15	Cobalt (Co)	8.85 g/cm ³	Group 9	58.94	Carcinogen	52	743-759	760	i	1 mSv/yr	100	0.000031	0.6		0.67523	0.1 ug/m ³	ATSDR			1.0	1.67	6.00		2.00	1.00	8.00	3
	Caesium	0.04 (3																		<1		2.00		1.00	1.00	1.00	1.00
16		8.94 g/m ³	Group 1			125	765-782	900		0.01	6000		80	2000	0.47242					<2		5.00		<1	<1	570	<1
17 18	,, , ,	8.53 g/m ³ 9.04 g/m ³	Group 3		Suspected			2567	i i																		
19	-	5.25 g/cm ³	Group 12 Group 3		Suspected Suspected	575		1529 1800																			
20	, -	7.87 g/cm ³			Suspected	3/3		3545																			
21	, ,	5.91 g/cm ³			Carcinogen		787-797	29.78				0.00001			0.00011									4.00	2	13	6.00
22		5.32 g/cm ³	-				800-813		i																		
23	Holmium Ho20 3	8.80 g/m ³	Group 12		Suspected			1474	i																		
24	Iron	7.87 g/cm ³	Group 8				878-902	420	i			0.01626	11.29		18.07					8100.00	717.45	30000.00		30000	12000	37000	26000
25	Lanthanum -138	6.17 g/m ³	Group 3	138.92	Suspected	711	903-908	920	i			0.00018	0.00268		0.02188					9.00	3358.21	43.00	16044.78	16	9	27	15
26	Lead - not 210 (Pb)	11.34 g/cm	³ Group 14	4 430.42	Carcinogen	2	129-131	710	i		300		15	10	0.330938	0.15 ug/m ³	OAQPS			6	0.40	30.0		10	4	29	11
27		0.53 g/cm ³		29.88	Suspected	335	969-974	2600	to LiOH	0.404424			0.3835		0.404424		ATSDR			3.00	7.82	15.00		4	1	11	5
28		9.84 g/cm ³			Suspected			1936	i																		
29	5	3.58 g/cm ³						520	i			0.0907	33.3369		35.96134												
30	- J	7.47 g/cm ³			C	140		1246	D	0.3 ug/m3	3800	0.05	43	500	1.61855	0.03 ug/m ³	ATSDR			120	2.79	93		33	10	190	31
31 32	,	13.55 g/cm			Suspected	3 120	1014-1064 448-450	-	1	0.0002 mg/m3 0.0003	40		0.063	1	0.051981	0.3ug/m ³ 0.1 ug/m ³	IRIS IRIS	0.1 ug/m ³	0.1	<0.05	0.00	<0.05		<0.1	<0.1	<0.1	<0.1
33		215.63g/m 10.22 g/cm			Suspected	326		within organics 720	-	0.00004 mg/m ³			10	50	0.2412	0.2ug/m ³	IARC 2B	0.1 09/11	0.1	<1	0.00	<1		<1	<1	<1	<1
34		8.90 g/cm ³	-		Carcinogen	57	1091-1107			0.00009 mg/m ³	400		20	20	0.38969	0.09 ug/m ³	ATSDR/CAL	0.00024 ug/m ³	0.00024	4	0.20	12.0		4.0	1	15	4
35		7.00 g/cm ³			Suspected	57	1001 1107	1021	D		100		20	20	0.50505		ATODIQ OLE		0.00021	2.70	0.20	2.40		1.0	1	15	·
36	,	12.99 g/cm	- '		Suspected	173	1113-1121		i			0.012000			0.00018												
37	Platinum	21.45 g/cm					1125-1138		i																		
38	Praseodymium Pro 6	6.78 g/cm ³	Group 3	140.92	Suspected			3512	D																		
40	Radium 222 , 226 or 228	5.5 g/cm ³	Group 2	226.05	Carcinogen			1500	i			5pCi total c	combined per li	itre of water													
41	Radium Bromide	5.79 g/cm ³	Group 2	385.88																							
42		8.85 g/cm ³	Group 9				1143-1171	L	i																		
43		1.63 g/cm ³	Group1	85.48	Suspected	711			D			0.00001			0.000091					8.00		31.00					
44	Samarium 147 (Chloride)	7.54 g/cm ³	Group 3		Suspected					PA Doc EPA/690/F	R-09/050F																
	Scandium Sc2O 3	2.99 g/cm ³ 4.50 g/cm ³			Suspected	584	1176 1000	050.	NK	0.005 mb////	, 200	0.00002	0.03657	10	0.03778	20 ug/m ³	CAL			<1		8.00		-2	~	~	-2
46 47		2.33 g/cm ³			Suspected Carcinogen	146	1176-1203 102	950+ 780		0.005 mh/kg/day	200	0.00002	0.03657	10	Annual av	20 ug/11	CAL			<1		5.00		<2	<2	<2	<2
48		2.067 g/cm			caremogen		102	392				0.00122	0.01000		0.01829												
49	1 ()	2.64 g/cm ³			Carcinogen		455	768.85	D	2 mg/kg/day		0.00122			0.01023					28		69		5	2	31	4
	Tellurium	6.24 g/cm ³			Carcinogen		1218-1226		i	2		0.00003			0.00039					<0.5		<0.5		<1	<1	<1	<1
	Terbium Tb407	8.27 g/cm ³			Suspected			1356	NK																		
	Thallium	11.86 g/cm			Suspected	279	1229-1238		i			0.00007	0.01355		0.01579					<1		<1		<2	<2	<2	<2
54	Thorium 229	11.73 g/cm			Carcinogen	227		270	i								IARC I	0.000185 pCi/m3	I	1.0		5.0		6	3	5	6
55	Thulium Tm2O ₃	9.33 g/cm ³	Group 12	2 169.4	Suspected			1950	i																		
	Titanium	4.54 g/cm ³			Carcinogen		1287-1294		i	0.0001 mg/m3			0.021		2.271688	0.01 ug/m ³	ATSDR	Respiratory		110		76					
	Tin	7.29 g/cm ³				307	1242-1276		i	0.3 mg/kg/day			1200	1200	0.09981					2.0		<1					
	Tungsten	19.25 g/cm					1297-1305		i											<1		<1					
	Uranium 234	19.05 g/cm			Carcinogen				i	0.00004 mg/m3										0.6		3.5		<1	<1	2	1
	Vanadium (86%)	6.10 g/cm ³			Carcinogen	200	1348-1364	500	i 	0.0001 mg/m3			8.6		0.123043		CAL		0.00034	13		53		50	28	62	54
	Ytterbium Yb2O ₃	6.95 g/cm ³			Suspected	581			NK			0.000000			0.000110					6 70		22.00		7.00	4.0	15	7.0
	<i>Yttrium Y2O</i> ₃ Zinc	4.47 g/cm ³ 7.14 g/cm ³			Suspected	711	1260 4202	600	D	0.2 ma/li-/d-	7400	0.000006			0.000118					6.70 9		33.00 25.0		7.60 4	4.8	15 280	7.8
	Zinc Zirconium	6.51 g/cm ³			Carcinogen	701	1369-1382	2 600 20	;	0.3 mg/kg/day	7400		600 0.16	0.000022	1.96084 0.00032					Э		25.0		4	T	200	3
	Hydrogen Cyanide	0.69g/cm ³	Group 4	179.16	Reproductive	35		20	NK		250		0.15	80	1.3058												
	PM10			27 5.10						ICPMS Analysis	200		0.15	50	24 hour av												
	PM2.5				Carcinogen					ICPMS Analysis						Annual Average	e										
	Radionuclides (Uranium)	18.7 g/cm ³	Group 3	3 238.03	Carcinogen	102	1307-1345	i	i	- ,						9		0.000185 pCi/m3	1								

Note 1 USEPA Residential level Average fit healthy 70 kg male inhales 50.4 m3 a day

HBTOM - Handbook of the toxicology of Metals - Nordberg et al Fourth Edition ATSDR Minimum Risk Levels (MRLs December 2019

	Cancer	Reproductive disorders	Immune function	Renal dysfunction	Liver dysfunction	Neurotoxic disorders
Aluminum						0
Arsenic	0	0	9	9	0	٥
Barium				0		
Beryllium			0			
Cadmium	9	0		0		
Chromium	0			0	0	
Cobalt			0			
Copper			0	٥	0	
Lead		0	9	0		0
Manganese						٥
Mercury		٥	٥	9		0
Nickel			0			
Silver			0			
Thallium				9	٥	٥
Thorium					0	
Uranium				0		

TABLE 1 Potential Health Effects Caused by Some Metals Found in Human Body Fluids

emissions. However, a minimum amount of information should be available to enable a mixture to be classified as sufficiently similar to the mixture of concern. For example, if a risk assessment is needed for gasoline contamination of groundwater and information is available on the chronic toxic effects of gasoline, then it may be possible to use the available information to assess risks from the contaminated groundwater. However, there are no set criteria to help decide when a mixture is sufficiently similar. Hence, the health assessor is left to determine whether the two chemical mixtures are sufficiently similar and whether this similarity justifies use of surrogate risk or toxicity data. The first two approaches, "mixture of concern" and "similar mixture," are used for those mixtures that have been experimentally tested as a whole to some extent.

5.2.3 Hazard Index Approach

The third approach, the "hazard index" (HI) approach, is the method used most often. This approach integrates the exposure level and the related toxicity into a single value by the use of a potency-weighted dose or response addition. The goal of the HI approach is to approximate the toxicity index that would have been determined had the mixture itself been tested (Mumtaz et al., 2002). Initially, the potential health hazard from exposure to each chemical is estimated by calculating its individual hazard quotient (HQ). The HQ is derived by dividing a chemical's actual exposure level through an environmental medium by its acceptable/allowable exposure level (AE), such as an MRL or a reference dose (RfD). The HI of the mixture is then calculated by adding together all the component HQs, as illustrated below for three chemicals in a mixture:

$$HI = \frac{Chem \cdot exposure_1}{AE1} + \frac{Chem \cdot exposure_2}{AE2} + \frac{Chem \cdot exposure_3}{AE3}$$

In a manner analogous to the HI approach for noncarcinogens, a HI for carcinogens can be estimated by dividing chemical exposure levels by the doses associated with a set level of cancer risk (EPA, 1986,2000):

$$HI = \frac{Chem \cdot Exposure_1}{DR_1} + \frac{Chem \cdot Exposure_2}{DR_2} + \frac{Chem \cdot Exposure_3}{DR_3}$$

In terms of estimating risk, the HI values obtained using the HI approach should be interpreted carefully. For example, if chemical mixture "X" yields an HI value of 4, it need not be interpreted as being twice as toxic as mixture "Y" that yields a value of 2. However, it can be said that mixture "X" is more toxic than mixture "Y". Thus, the HI approach can be used for priority setting of mixtures. As the value of the HI increases toward unity, the potential hazard of a mixture increases. The potential health effects of a mixture are further analyzed and investigated if the HI value is equal to or greater than 1, since it is based on the concept of dose additivity (Teuschler and Hertzberg; 1995; U.S EPA, 2000). For carcinogens, the preceding equation assumes that each carcinogen has a linear dose-response curve and that each carcinogen is acting independently (EPA, 1986).

5.2.4 Target-Organ Toxicity Dose

In terms of estimating risk, it is important that the estimates are realistic. The use of acceptable exposure

Page	1	Of	2	
------	---	----	---	--

Year	Rank	Substance Name	CAS Registry Number	Toxicity	Water GMMC (mg/L)	Soil GMMC (mg/kg)	Air GMMC (mg/m3)	Theoretical Daily Dose (TDD) (mg/day)
2019	X 1	ARSENIC	7440-38-2	1	0.06030	48.63636	0.00007	0.07113
2019	≁ 2	LEAD	7439-92-1	10	0.11817	884.79106	0.00243	0.33153
2019	⋌ 3	MERCURY	7439-97-6	1	0.00350	2.71690	0.00314	0.05109
2019	~ 7		7440-43-9	10	0.03876	19.40584 46.31430	0.00012	0.04444 0.82422
2019 2019	√ 17 35	CHROMIUM, HEXAVALENT CYANIDE	18540-29-9 57-12-5	10	0.23628	27.02039	0.07093	1.30565
2019	×52	COBALT	7440-48-4	10	0.06399	17.07890	0.00003	0.06780
2019	×58	NICKEL	7440-02-0	100	0.30382	90.24526	0.00462	0.39114
2019	4 66	CHROMIUM(VI) TRIOXIDE	1333-82-0	1	0.15211	2.13689		0.15254
2019	69	METHANE	74-82-8	10	0.48000		529.80386	7947.53787
2019	775	ZINC	7440-66-6	1000	1.68153	1400.12252	0.00260	2.00056
2019	~ 78	CHROMIUM	7440-47-3	5000	0.20702	198.07556	0.00059	0.25551
2019	95	RADIUM-226	13982-63-3	1				
2019 2019	97 101		7440-61-1 7440-14-4	1				
2019	101	THORIUM	7440-29-1	1				
2019	102	RADON	10043-92-2	1				
2019	108	RADIUM-228	15262-20-1	1				
2019	109	THORIUM-230	14269-63-7	1				
2019	110	URANIUM-235	15117-96-1	1				
2019	111	THORIUM-228	14274-82-9	1				
2019	112	RADON-222	14859-67-7	1				
2019	113	URANIUM-234	13966-29-5	1				
2019 2019	118 119	PLUTONIUM-239 POLONIUM-210	15117-48-3 13981-52-7	1				
2019		COPPER	7440-50-8	5000	0.37123	431.11606	0.00091	0.47117
2019	-	PLUTONIUM-238	13981-16-3	1				
2019	122	LEAD-210	14255-04-0	1				
2019	123	AMOSITE ASBESTOS	12172-73-5	1				
2019	123	PLUTONIUM	7440-07-5	1				
2019	123	STRONTIUM-90	10098-97-2	1				
2019	126	RADON-220	22481-48-7	1	0 51400	426 64499	0.00108	0.61652
2019	136	BARIUM	7440-39-3 7439-96-5	1000 5000	0.51499 1.36531	426.64488 1219.24985	0.00108	0.61652
2019 2019	140 147	MANGANESE	7782-49-2	100	0.03657	5.36217	0.00002	0.03795
2019	201	VANADIUM	7440-62-2	1000	0.10855	57.46577	0.00020	0.12304
2019	217	CESIUM-137	10045-97-3	10				
2019	217	Chromic Acid	7738-94-5	10				
2019	219	POTASSIUM-40	13966-00-2	10				
2019	225	THORIUM-227	15623-47-9	10		100 70101	0.00745	24.05.002
2019	226		14797-55-8	1000	21.42883	103.78191	0.02715	21.85683
2019 2019	227 228	ARSENIC ACID ARSENIC TRIOXIDE	7778-39-4 1327-53-3	1				
2019	228	SILVER	7440-22-4	1000	0.02696	8.25419	0.00003	0.02901
2019	235	ARSINE	7784-42-1	1				
2019	239	MERCURIC CHLORIDE	7487-94-7	1				
2019	239	SODIUM ARSENITE	7784-46-5	1				
2019	239	URANIUM-233	13968-55-3	1				
2019	244	ANTIMONY	7440-36-0	5000	0.08579	75.25725	0.00012	0.10261
2019	279	THALLIUM	7440-28-0	1000	0.01358	6.04104	0.00007	0.01582
2019			7440-31-5	1000 5000	0.07865	96.69555 19.11067	0.00012	0.09981 0.07630
2019 2019	312 313		7440-32-6	1000	2.25872	58.79488	0.00002	2.27169
2019	313	MOLYBDENUM	7439-98-7	1000	0.22919	56.17243	0.00005	0.24120
2019	337	BORON	7440-42-8	5000	1.64915	181.03419		1.68535
2019	344	LITHIUM	7439-93-2	1000	0.38352	104.50714		0.40442
2019	351	CHROMIUM, TRIVALENT	16065-83-1	1000	0.10818	299.78167		0.16814
2019		CYANIDE, SODIUM	143-33-9	10				
2019			1317-36-8	10				
2019	375		7446-70-0	10				
2019	375		1314-13-2 18496-25-8	10 5000	3.09101	396.33319		3.17028
2019 2019	399 439	SULFIDE SULFUR	7704-34-9	5000	5.03101	550.55515	0.00122	0.01829
2019	439	INDIUM	7440-74-6	1000			0.00002	0.00027
2019	453	LEAD-212	15092-94-1	100				
2019	470	TRITIUM	10028-17-8	1000				
2019	478	TUNGSTEN	7440-33-7	1000				
2019	479	GERMANIUM	7440-56-4	1000			0.00000	0.00002
2019	496	TELLURIUM	13494-80-9	1000			0.00003	0.00039
2019	500	COBALT-60	10198-40-0	100				
2019	570		7440-45-1 7440-00-8	5000 5000				
2019 2019	573 575	NEODYMIUM DYSPROSIUM	7440-00-8	5000				
2013	5/5	EUROPIUM	7429-91-0	5000				

Page	2	Of	2
------	---	----	---

Year	Rank	Substance Name	CAS Registry Number	Toxicity	Water GMMC (mg/L)	Soil GMMC (mg/kg)	Air GMMC (mg/m3)	Theoretical Daily Dose (TDD) (mg/day)
2019	575	PRASEODYMIUM	7440-10-0	5000				
2019	575	SAMARIUM	7440-19-9	5000				
2019	581	YTTERBIUM	7440-64-4	5000				
2019	583	GALLIUM	7440-55-3	5000			0.00001	0.00011
2019	584	SCANDIUM	7440-20-2	5000				
2019	585	INDAN	496-11-7	1000	0.00002	0.46900		0.00012
2019	612	ANTIMONY TRIOXIDE	1309-64-4	1000				
2019	711	CESIUM	7440-46-2	50000				
2019	711	IRON	7439-89-6	50000	11.29038	33072.13825	0.01626	18.14875
2019	711	LANTHANUM	7439-91-0	50000			0.00018	0.00268
2019	711	MAGNESIUM	7439-95-4	50000	33.33691	6317.86906	0.09072	35.96134
2019	711	NITROGEN	7727-37-9	50000	14.77943			14.77943
2019	711	NITROGEN OXIDE	10024-97-2	50000				
2019	711	POTASSIUM	7440-09-7	50000	13.30819	1379.44670	0.37635	19.22941
2019	711	RUBIDIUM	7440-17-7	50000			0.00001	0.00009
2019	711	SILICON	7440-21-3	50000	55.34264		0.32500	60.21764
2019	711	SODIUM	7440-23-5	50000	136.06748	819.01805	0.99375	151.13748
2019	711	SULFATE	14808-79-8	50000	737.54456	4588.94808	0.12563	740.34675
2019	711	YTTRIUM	7440-65-5	50000		0.10488	0.00001	0.00012
2019	711	ZIRCONIUM	7440-67-7	50000			0.00002	0.00032
