Amy Selvaraj (DELWP)

From: Sent: To: Cc: Subject: Attachments: Andrew Helps Wednesday, 10 February 2021 11:38 AM Amy Selvaraj (DELWP)

Significant changes to the KALBAR operational equipment list 8344.pdf; 8319Rev4.pdf; 8330 Rev 33.pdf; 10022021110145.pdf

EXTERNAL SENDER: Links and attachments may be unsafe.

Amy and Anthony.

Please find attached my comments re the proposed use of centrifuges by Kalbar at the Lindenow mine site.

I would like the opportunity to talk to both of you face to face on this critical issue.

Please inform me of a suitable time and place and I will come into the City for this meeting.

Kindest Regards

Andrew Helps

Mobile

UNEP Global Mercury Partnership Waste Management Partnership - designated expert Mercury added products and alternatives – designated expert Mercury Fate and Transport Group

IMPORTANT PLEASE READ: This email may contain confidential and or proprietary information and may be protected by the rules of legal privilege. If you receive this email by mistake, or are not the intended recipient you must not use it or the information in any way. If this is the case, could you please inform the sender by return email or by telephoning and delete any such email from your computer. This email and any attachments, has been scanned for computer viruses but you should also perform your own scan. No liability is accepted for any loss or damage, whether caused by our negligence or otherwise, that results from a computer virus or a defect in the transmission of this email or the attached file.

Good morning Amy and Anthony,

I hold grave concerns with the KALBAR proposal to use centrifuges in their processing operation. The KALBAR ore body has a number of Radionuclides (RADNUC's) of concern in the ore body.

As the Chinese miners (who were early adopters of the uses of centrifuges in Rare Earth mines have discovered) unless you know on a minute by minute basis the actual metals content (speciation) of the ore being fed into the centrifuges you are heading towards a limited and very brief life span along with a large number of nearby residents and workers.

The real problem is the presence of Zirconium in the ore stream and hence the processing plant dust stream.

Zirconium in the dust stream from a crusher plant will ignite at 20 degrees C. My Colleagues in the Chinese Environment Bureau tell me that 4kg of dust from a centrifuge is the equivalent of a kg of prilled ammonium nitrate mixed with AVTUR..

The US EPA (EPA.Gov) has extensive data on this subject and it is of grave concern that KALBAR's consultants have not referenced this data base for the benefit of the Lindenow community. This was probably because it was an awkward truth!

I suggest that you inform you self by loading down from the US EPA website a copy of the following document: Evaluation of Guidelines to Technologically Enhanced Naturally Occurring Radioactive Materials <u>http://nap.edu/catalog/6360.html</u>

Because of this failure by KALBAR's consultants to provide their advice on RADNUC issues (probably because they are not experienced in this area) the Lindenow the Gippsland Lakes RAMSAR and indeed the entire East Gippsland community will be put at risk if the KALBAR mine is permitted by your Department.

I have further concerns with the fact that the KALBAR consultants have not mentioned in their reports the explosive characteristics of the dust that will be emitted by the operational KALBAR Mine.

There was a very serious accident in China at a large REE mine in central west China in the Northern hemisphere Summer of 2010.

When I was at the UNEP Minamata Conference in Kumamoto Japan in 2013 (Which I chaired for the UNEP Secretary General) the Chinese representatives showed us footage of the explosion site – 57 site workers killed. Tracked excavators and Bulldozers were overturned by the blast, burned out and had all their aluminium and brass components melted!

The plant was destroyed and 20 children at a nearby primary school critically injured – 7 later died. The Chinese have never re-activated this mine – they now prefer to buy their REE's from overseas.

After a team of experts from Beijing had conducted what we would call a coronial enquiry, the mine manager and the mine engineer were publicly executed in front of a crowd of nearly 1,000 people.

This is a level of mine managerial responsibility we do not have in Australia unfortunately (GBM mining Bendigo comes to mind here with at least two reported mine related arsenic cancer deaths each year for a mine that the Government holds a \$ 6 million rehabilitation bond for).

If I was performing due diligence on the KALBAR proposal for one of the Global Investment NGO's (a task that I have often carried out over the last 40 years), the first document that I would look for would be the projects Radionuclide Carcinogenicity Slope Factor Table.

KALBAR would not even understand what this table is let alone have the skills or be able to buy the skills in Australia to compile such a document. To save time I have compiled this table (my file#8319 xlsx dated 15/01/2021.

It is interesting to note that KALBAR never refer to Carcinogens in any discussion of the metals in their ore body. This leads to 2 critical, as yet unanswered questions:

Question 1. Does any senior executive in KALBAR understand the issues with carcinogenic metals in ore bodies?

Question 2. If the honest answer to question #1 (and I doubt that we will get anything approaching an honest answer from KALBAR) is NO then where is the roadmap from KALBAR to bring their senior managers skill set up to the required level from what is clearly a zero base.

The Lindenow Community do not have the time to wait for this answer.

This situation leads to an interesting situation with two options:

- 1. KALBAR have hired the consultants that they wanted to hire not the consultants that they needed to hire.
- 2. That KALBAR have been given data on prospective consultants in the mining sector by other mining companies that have no understanding of the complex issues involved in setting up a highly toxic and carcinogenic metal mine in a RAMSAR catchment.

My view is that KALBAR probably adopted option 1 because they were "new entrants" in this mining sector and were unsure if others in the mining encampment were being honest with them - this was a reasonable assumption.

Kalbar and their consultants are clearly new entrants to the REE mining sector and this lack of experience has detracted from the quality and veracity of the data that supports their EES.

This failure by KALBAR if it was presented to a <u>competent tribunal</u> would result in the project proposal being <u>denied</u>.

The Non-KALBAR independent surface ore body data.

My first involvement with the rapidly emerging KALBAR issues was when a number of the Lindenow farmers asked me to chair and speak at a public information session that they had organised at the Lindenow public hall in 2019.

I have compiled the attached table (File 8319.xlsx) which shows the Radionuclide Carcinogenicity Slope Factors. This data comes from the US EPA Federal Guidance Report No.13 Morbidity Risk Coefficients.

I respectfully suggest that you would be very wise not to ignore the data in this spreadsheet as it will be critical in future coronial enquiries into premature deaths in the Lindenow community with particular emphasis on infants and still births.

Kalbar are obviously unaware of this issue which will become of critical importance when as the development of the mine progresses and these toxic dusts particles impact the Lindenow community and the wider east Gippsland community.

I have put the relevant data from ENVIROLAB Analysis #22941 dated 16/10/2021 into this table. I took these samples at the Lindenow mine site on the 13^{th} of October 2020.

THE SITE Fire Risk.

I have seen no information from KALBAR that informs me that they (KALBAR) understand the fire risks with the excavated ore body.

I would think that there are possibly two explanations for this failure:

- 1. KALBAR's consultants desire to please their client KALBAR under any circumstance.
- 2. That the KABAR consultants do not have the funds to buy a copy of the key reference Marks Standard Handbook For Engineers ISBN0-07-004997-1

If KALBARS consultants did have access to this handbook, they could have informed their advice by looking at Sections 7-24 and 7-25 (copy attached) which deal with the Explosive Characteristics of Various Dusts (Table 7.1.24).

If the KALBAR consultants had looked at the Metals section on page 7-24 (and I am presuming here that the consultants have access to this sort of critical reference) then some form of alarm should have been raised by the data on Metals.

The KALBAR consultants have not raised this issue as far as I can see. I can only conclude that the KALBAR consultants were either incompetent or under instructions not to raise this issue.

3. Synopsis.

As you will see when you look at page 7-25 of the above referenced document you will notice the following alarming data:

- 3.1 Zirconium dust cloud Ignition temperature at 20 degrees Centigrade.
- 3.2 Uranium dust cloud Ignition temperature at 20 degrees Centigrade.
- 3.3 Vanadium dust cloud ignition temperature at 500 degrees centigrade.
- 3.4 Aluminium dust cloud ignition temperature at 650 degrees centigrade, my last tests at 12,000 ug/L and 43,000 ug/L.
- 3.5 Thorium my last test at 5 ug/l dust cloud ignition temperature 270 degrees centigrade.

A moderately slow grass fire in a medium fuel load (as was demonstrated in the 1983 Ash Wednesday fire) is capable of generating enough radiant heat to melt a steel motor car body (880 degrees C).

FINAL Comments.

I am fully aware that ERR will approve this mine in order to please the Minister and The Premier. The simple logic of this approval is that it will create about 250 jobs in east Gippsland for CFMEU members.

My time to put this letter to you today is that I can at least say at the inevitable Coronial Inquiry following deaths from the inhalation of radioactive dust at in the perimeter of the Lindenow mine that I had warned the ERR Department via this letter that this would happen.

I realise that you will not respond in any meaningful way to this letter so I will just wait to provide evidence at the eventual Coronial enquiry.

Sincerely

Andrew Helps UNEP Delegated toxic metal expert to the Minamata Convention on Mercury.

Signed Hard Copy by registered mail.

Radionuclide Table: Radionuclide Carcinogenicity - Slope Factors

	Revision #2 File: 8319.xlsx	НВТОМ			is the customary u of Metals (Nordbe			< 10 ¹⁰ nuclear transformat	tions per second.	-	um in drinking water to combined radium-226	and	
	20/08/2020	IBION		the roxicology				Slope Factor Morbidity Lifetime excess Total Ca		radium 228 per litre of water.			
Element	Kalbar Analysis	Element (Atomic Number	HBTOM * Reference Pagess	Isotope	Radioactive Half Life (Years)	ICRP Lung Type	Gi Absorption Factor (f ₁) ⁹	Water Ingestion (Risk/pCi)	Food Ingestion (Risk/pCi)	Soil Ingestion (Risk/pCi)	Inhalation Risk (Risk/pCi)	External Exposure (Risk/y per pCi/g	
Aluminium	260-4500 mg/kg	13	549-560	Al-26 Al-28	716000 2.240	М	0.0100	0.001730	2490	0.47000	0.000000000069	0.0000133 0.0000092	
Antimony	<0.5 mg/kg Carcinogen		565-572	Sb 115 Sb 116	31.80 15.80	M M	0.1000 0.1000	0.000000000000051 0.000000000000051	0.0000000000001 0.0000000000001	0.11600 0.11600	0.00000000000002 0.000000000000002	0.0000039 0.0000105	
		51		Sb-126 Sb 127	12.40 3.85	M M	0.10000 0.1000	0.0000000001 0.0000000001	0.0000000002 0.0000000000147	0.29 0.0000000003	0.0000000000115 0.000000000008	0.00000649 0.00000307	
Arsenic	61-491 mg/kg <mark>Carcinogen</mark>	33	582-610	As-69 As-70 As-71 As-72 As-73 As-74 As-76 As-77 As-78	15.20 52.60 64.80 26.00 80.30 17.80 26.30 38.80 90.70	M M M M M M M	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.0000000000000105 0.000000000000320 0.000000000000320 0.10 0.000000000002 0.00000000007 0.0000000000	0.0000000000015 0.000000000003 0.00000000001 0.0000000000	0.2390 0.00000000001 0.0000000003 0.0000000000	0.00000000000004 0.0000000000014 0.0000000000	0.00000443 0.0000196 0.00000237 0.0000082 0.00000006 0.0000034 0.0000020 0.00000036 0.00000036	
Thorium	1.0 -120 mg/kg Carcinogen	90		Th-226 Th-227 Th-228	30.90 18.70 1.91	m S d S y S	0.001 0.0005 0.001	0.000000000001 0.00000000005 0.0000000001	0.00000000000923 0.00000000005 0.0000000001	0.0000000000016 0.00000000007 0.00000000029	0.00000000016 0.00000000014 0.00000013	0.00000002 0.0000004 0.00000001	
	In Kalbar ore body			Th-228+D Th-229 Th-229+D	1.91 7340.00 7340.00	y S y S y S	0.001 0.001 0.001	0.000000003 0.0000000002 0.0000000005	0.000000004 0.0000000003 0.0000000007	0.0000000081 0.00000000050 0.0000000129	0.00000014 0.00000018 0.00000023	0.00000776 0.00000023 0.00000117	
	See pages 38-40 of TE	NORM Handbook		Th-230 Th-231	77000.00 25.50	y S h S	0.001 0.001	0.0000000001 0.0000000000	0.000000000119 0.000000000003	0.0000000020 0.00000000001	0.00000003 0.00000000002	0.00000000 0.00000002	
	Decays to Radium 228	Unstable		Th-232 Th-234	14 Billion Years 24.10	y S d S	7340.00 0.001	0.000000001 0.0000000000	0.00000000133 0.00000000034	0.0000000023 0.00000000007	0.00000004 0.00000000003	0.000000003 0.00000002	
Tin	1.7 mg/kg	50	1242-1276	Sn-110 Sn-111 Sn-113 Sn-117m Sn-121m Sn-121m Sn-123 Sn-123m Sn-125 Sn-126 Sn-127 Sn-128	$\begin{array}{c} 4.00\\ 35.30\\ 115.00\\ 13.60\\ 293.00\\ 27.10\\ 55.00\\ 129.00\\ 40.10\\ 9.64\\ 100000.00\\ 2.10\\ 59.10\end{array}$	h M m M d M d M h M y M d M y M h M m M	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	0.000000000019 0.000000000019 0.0000000000	0.00000000003 0.00000000000000000000000	0.00000000005 0.000000000000000 0.00000000	0.00000000000067 0.000000000000000 0.0000000000	0.000001130 0.000002290 0.000000469 0.00000000 0.00000000 0.00000000 0.000000	
Titanium	44-154 mg/kg Carcinogen	22		Ti-44 Ti-45	47.30 3.08	S S	0.01000 0.0100	0.00000000026 0.0000000000006	0.00000000004 0.00000000000009	0.000000001 0.000000000018	0.000000003 0.0000000000003	0.0000002 0.00000379	
Tungsten	<1 mg/Kg	74		W-176	2.30	h F	0.3000	0.0000000000004	0.000000000001	0.0000000000011	0.0000000000001	0.0000032	

W-181 121.00 d F 0.3000 0.00000000001 0.00000000001 0.000000000001 0.00000000000000000000000000000000000	00000033 0.00000000004 0.0000002	0.0000000000005 0.0000000000033 0.0000000000	0.00000000000 0.30000000000 0.0000000000	0.000000000002 0.0000000000012 0.0000000000	0.3000 0.3000	m F d m F	135.00 21.70 37.50	W-177 W-178 W-179			
Uranium 3-9 mg/kg 234 U-230 20.80 d M 0.0200 0.00000000029 0.000000000021 0.0000000000103 0.0000000000011 0.00000000000000000000000000000000000											
W-187 23.90 h F 0.3000 0.00000000037 0.0000000005 0.000000000103 0.00000000011 0.00000000000000000000000000000000000											
W-188 69.40 d F 0.3000 0.00000000140 0.0000000021 0.00000000400 0.0000000005 0.00000000000000000000000000000000000											
Uranium 3-9 mg/kg 234 U-230 20.80 d M 0.0200 0.00000002090 0.000000002980 0.000000005660 0.0000000455000 0.00000000000000000000000000000000000											
Carcinogen U-231 4.20 d M 0.0200 0.00000000018 0.00000000026 0.00000000050 0.000000000018 0.00000 U-232 72.00 y M 0.0200 0.000000002920 0.0000000003850 0.000000005740 0.0000000195000 0.00000000000000000000000000000000000											
U-232 72.00 y M 0.0200 0.00000002920 0.000000003850 0.000000005740 0.0000000195000 0.000000 U-233 159000 y M 0.0200 0.00000000718 0.00000000969 0.00000001600 0.000000116000 0.000000 U-234 245000.00 y M 0.0200 0.00000000707 0.000000000955 0.0000000114000 0.000000 U-235 70400000 y M 0.0200 0.000000000696 0.000000000944 0.000000001570 0.000000011000 0.00000000000000000000000000000000000	00005660 0.000000455000 0.00000003	0.000000005660	0.000000002980	0.000000002090	0.0200	d M	20.80	U-230	234	3-9 mg/kg	Uranium
U-233159000y M0.02000.000000007180.000000009690.000000016000.0000001160000.000000U-23424500.00y M0.02000.000000007770.000000009550.000000015800.0000001140000.000000U-23570400000y M0.02000.000000006960.000000009440.000000015700.0000000110000.00000000000000000000000000000000000	00000050 0.00000000018 0.0000016	0.000000000050	0.000000000026	0.000000000018	0.0200	d M	4.20	U-231		Carcinogen	
U-234245000.00y M0.02000.0000000007070.0000000009550.0000000015800.00000001140000.000000U-23570400000y M0.02000.0000000006960.000000009440.0000000015700.0000000110000.00000000000000000000000000000000000	0.00005740 0.000000195000 0.00000001	0.000000005740	0.000000003850	0.000000002920	0.0200	уM	72.00	U-232			
U-235 70400000 y M 0.0200 0.00000000696 0.00000000944 0.000000001570 0.0000000101000 0.000000	00001600 0.0000000116000 0.00000000	0.000000001600	0.000000000969	0.000000000718	0.0200	уM	159000	U-233			
		0.000000001580	0.000000000955	0.000000000707	0.0200	уM	245000.00				
		0.000000001570	0.000000000944	0.000000000696	0.0200		70400000				
•							70400000				
U-240 14.10 h M 0.0200 0.00000000070 0.00000000103 0.000000000202 0.00000000030 0.000000	00000202 0.000000000000 0.00000000	0.000000000202	0.000000000103	0.000000000070	0.0200	h M	14.10	U-240			
		0.000000000003	0.0000000000002	0.0000000000001	0.0100					17-130 mg/kg	Vanadium
										Carcinogen	
V49 330.00 d M 0.0100 0.00000000001 0.00000000002 0.0000000000	00000004 0.000000000000 0.00000000	0.000000000004	0.000000000002	0.000000000001	0.0100	d M	330.00	V49			
Zirconium 6,250-42,750 mg/kg 40 Zr-97 16.90 m 0.0100 0.00000000125 0.000000000183 0.000000000375 0.00000000005 0.0000000 Carcinogen	00000375 0.00000000005 0.000008620	0.000000000375	0.000000000183	0.000000000125	0.0100	m	16.90	Zr-97	40		Zirconium
70kg Male Inhalation of 50.4 M ³ Per Day						Per Day	50.4 M ³	Inhalation of	70kg Male		

UNEP Global Mercury Partnership

Author: Andrew Helps

Partnership Areas: Mercury in Gold Mining, Mercury Supply and Storage, Mercury Air Transport and Fate, Mercury in Products.

DATA From Envirolab Analysis #22941 dated 16/10/2020

Conversion Factors ations in air(at 25° C) from PPM to mg/m³ = 6/12/2020 To Convert conce

HI = +QTY Chemical TDD

	•						To Convert co	ncentrations in air(at 25	5°C) from PPM to	$mg/m^3 =$		6/12/2020															
	KALBAR Resource	es Linden	ow (Vic) Project			(ppm) x (mole	ecular weight of the con	mpound) / (24.45) e.g for Antimony	1 ppm = 4.97 mg	g/m ³ .)			Note*												
															A Hazard Inde			-	or remediation	n							
	Rare Earth/Toxi Revision 33	ic Elemei	nt/Con	-	Rare Earths in Italion		ate	Lindenow Tes	sting on 1	3/10/2020		ATSDR &	ATSDR &			PDRV - Prioriti	sed Dose Respor	nse Value		13/10/2020 Water	Exceedence	13/10/2020 Water	Exceedence	13/10/2020 Sand	13/10/2020 Sand	13/10/2020 Sand	13/10/2020 Sand
	6th February 2021						HBTOM*	Ignition	Solubility	ATSDR	Australia	USEPA	USEPA	Australia	ATSDR SPL		CHRONIC IN			L-25	USEPA	L-28	USEPA	L26	L27	L29	L30
	CHEMICAL	Specific	Metal		California	ATSDR		Temperature	in 100 parts		Residential	Resident	Resident		THEORETICAL		Data Source		USEPA	ug/L	Tapwater	ug/L	Tapwater	mg/kg	mg/kg	mg/kg	mg/kg
	ELEMENTS/COMPOUNDS mg/kg - ug/kg	S: Gravity	Group	Weight (Molecular	Rated as Carcinogen	Rank	Pages	(Dust ⁰ C)	Cold Water Formular	Chronic mg/kg/day	Soil mg/kg	Air Carcinogenic	Tapwater mg/L	Tapwater ug/L	Daily Dose TDD (mg/day)	PDRV* Non Cancer		PDRV* Cancer	PDRV* Cancer								
				Weight)	ear enroyen				Dependent		(HIL A)	Target Risk		09/2	(Fit 70kg male)	Horr Carreer		curreer	Cancer								
									D= Dissolves			ug/m ³							micrograms								
1	Aluminium (Al)	2.70 g/cm ³	Group 1		Carcinogen	183	549-560	650	i	1		0.52	2000	2	10.323	Neurological	ATSDR	0. 2ug/m ³		12000	6	43000		13000	4700	28000	14000
2	Antimony (Sb) Arsenic (see note 1)	6.69 g/cm ³ 5.73 g/cm ³	Group 15 Group 15		Carcinogen Carcinogen	232 1	565-572 582-610	420 815	!	0.0003	100	0.021 0.00065	0.78 0.052	3 10	0.103992 0.071278	0.2ug/m ³ 0.015ug/m ³	IRIS IARC 2B Cal IARC 1	0.2ug/m ³ 0.015ug/m ³	0.2 0.0043ug/m ³	<1 3	57.69	<1 4.00		<7 5.00	<7 <4	<7 8.00	<7 4.00
4	Boron	2.47 g/cm ³	Group 13 Group 13		Carcinogen	•	382-010	015		0.0005	100	2.1	400	10	0.0/12/8	0.01509/11	Cal IARC I	0.0150g/11	0.00+5ug/m	30	0.08	60.00		<3	<3	15.00	<3
5	Arsine (gaseous AsH3)	2.769 g/cm ³			Carcinogen	1	615	285	20cc			0.005	0.007			0.05 ug/m ³	IARC 1	0.0043ug/m ³	0.0043	50	0.00	00.00		?	?	?	?
6	Barium	3.51 g/cm ³	Group 2	137.36		134	625-633	725	D	0.2		0.00108	0.51499		0.61652			5.		37.00	71.85	150.00		18	15.0	58.0	22.0
7	Beryllium (glucinum)	1.85 g/cm ³	Group 4		Carcinogen	43	636-651	1278	i	0.002	60	0.00000	2.50	60.0	0.0078	0.01 ug/m ³	IRIS IARC 1	0.0024ug/m ³	0.0024	<0.5		3.00		<1	<1	<1	<1
8	Bismuth (Bi)	9.72 g/cm ³	Group 4	209.00			655-663	271.3	i											<1		<1		<1	<1	<1	<1
9	Cadmium (Cd)	8.65 g/cm ³	Group 12	2 112.41	Carcinogen	7	668-708	1040	i	0.0005	20	0.00001	0.92	2	0.045127	0.01 ug/m3	ATSDR	0.0018ug/m ³	0.0018	<0.2		<0.2		<0.4	<0.4	<0.8	<0.4
11	Ceric Oxide (Cerium)Ce02	6.71 g/cm ³	Group 3	172.13	Suspected	570	101-102	3500	i	1 mSv/yr		0.094								14.00		66.00					
14	Chromium compounds (Cr)		Group 6		Carcinogen	66	717-739	580	i	0.0009		0.00001			0.00263					11		48					
15	Cobalt (Co)	8.85 g/cm ³	Group 9	58.94	Carcinogen	52	743-759	760	i	1 mSv/yr	100	0.000031	0.6		0.67523	0.1 ug/m ³	ATSDR			1.0	1.67	6.00		2.00	1.00	8.00	3
	Caesium	0.04 / 3	-																	<1		2.00		1.00	1.00	1.00	1.00
16	Copper (Cu)	8.94 g/m ³	Group 11			125	765-782	900	i	0.01	6000		80	2000	0.47242					<2		5.00		<1	<1	570	<1
17	Dysprosium Dy20 3	8.53 g/m ³	Group 3		Suspected			2567	i																		
18 19	Erbium Er20 ₃	9.04 g/m ³ 5.25 g/cm ³	Group 12 Group 3		Suspected	575		1529 1800	1																		
20	Europium Eu0 3 Gadollinium Gd2p0 3	5.25 g/cm ³	Group 3 Group 3		Suspected Suspected	5/5		3545	1																		
21		5.91 g/cm ³	Group 13		Carcinogen		787-797	29.78	•			0.00001			0.00011									4.00	2	13	6.00
22	Germanium	5.32 g/cm ³	-		j		800-813	2500	i			0100001			0100011										-	15	0100
23	Holmium Ho20 3	8.80 g/m ³	Group 12		Suspected			1474	i																		
24	Iron	7.87 g/cm ³	Group 8				878-902	420	i			0.01626	11.29		18.07					8100.00	717.45	30000.00		30000	12000	37000	26000
25	Lanthanum -138	6.17 g/m ³	Group 3	138.92	Suspected	711	903-908	920	i			0.00018	0.00268		0.02188					9.00	3358.21	43.00	16044.78	16	9	27	15
26	Lead - not 210 (Pb)	11.34 g/cm3	Group 14	4 430.42	Carcinogen	2	129-131	710	i		300		15	10	0.330938	0.15 ug/m ³	OAQPS			6	0.40	30.0		10	4	29	11
27	Lithium Oxide Li 2 O	0.53 g/cm ³	Group 1	29.88	Suspected	335	969-974	2600	to Li0H	0.404424			0.3835		0.404424		ATSDR			3.00	7.82	15.00		4	1	11	5
28	Lutetium -176	9.84 g/cm ³			Suspected			1936	i																		
29	Magnesium	3.58 g/cm ³	Group 2					520	i			0.0907	33.3369		35.96134												
30	Manganese	7.47 g/cm ³				140		1246	D	0.3 ug/m3	3800	0.05	43	500	1.61855	0.03 ug/m ³	ATSDR			120	2.79	93		33	10	190	31
	Mercury	13.55 g/cm ⁻			Suspected	3	1014-1064	to gas @10 ^o C	i	0.0002 mg/m3	40		0.063	1	0.051981	0.3ug/m ³	IRIS	o 3		<0.05		< 0.05		<0.1	<0.1	<0.1	<0.1
32	Methyl Mercury	215.63g/mo 10.22 g/cm ³			Suspected	120	448-450	within organics		0.0003 0.00004 mg/m ³			0.2	50	0.0440	0.1 ug/m ³ 0.2ug/m ³	IRIS	0.1 ug/m ³	0.1		0.00						
33 34	Molybdenum Nickel	8.90 g/cm ³			Causingana	326 57	1077-1107 1091-1107	720	1	0.00004 mg/m ³	400		10 20	50 20	0.2412 0.38969	0.20g/m ³	IARC 2B ATSDR/CAL	0.00024 ug/m ³	0.00024	<1 4	0.20	<1 12.0		<1 4.0	<1	<1	<1 4
35	Neodymium 144	7.00 g/cm ³			Carcinogen Suspected	57	1091-1107	950+ 1021	D	0.00009 mg/m	400		20	20	0.36969	0.05 ug/m	ATSDR/CAL	0.00024 09/11	0.00024	2.70	0.20	2.40		4.0	1	15	4
36		12.99 g/cm ³			Suspected	173	1113-1121	2963	i			0.012000			0.00018					2.70		2.10					
37	Platinum	21.45 g/cm ³			Caspecter		1125-1138	2505	i			0.012000			0100010												
38	Praseodymium Pro 6	6.78 g/cm ³	Group 3		Suspected			3512	D																		
40	Radium 222 , 226 or 228	5.5 g/cm ³	Group 2	226.05	Carcinogen			1500	i			5pCi total o	ombined per li	tre of water													
41	Radium Bromide	5.79 g/cm ³	Group 2	385.88																							
42	Rhodium	8.85 g/cm ³	Group 9	102.91			1143-1171		i																		
43	Rubidium	1.63 g/cm ³	Group1	85.48	Suspected	711			D			0.00001			0.000091					8.00		31.00					
44	Samarium 147 (Chloride)	7.54 g/cm ³	Group 3		Suspected					PA Doc EPA/690/F	R-09/050F																
	Scandium Sc2O 3	2.99 g/cm ³			Suspected	584			NK							20 (3				<1		8.00					
46	Selenium Silica PM _{2 5} Faction)	4.50 g/cm ³ 2.33 g/cm ³			Suspected	146	1176-1203	950+	i	0.005 mh/kg/day	200	0.00002	0.03657	10	0.03778	20 ug/m ³	CAL			<1		5.00		<2	<2	<2	<2
47 48	Sulphur (%)	2.35 g/cm ³			Carcinogen		102	780	:			0.00122	0.31000		Annual av 0.01829												
	Sulphur (%) Strontium SrO (Stable)	2.067 g/cm 2.64 g/cm ³			Carcinogen		455	392 768.85	ı D	2 mg/kg/day		0.00122			0.01029					28		69		5	2	31	4
	Tellurium	6.24 g/cm ³			Carcinogen		455 1218-1226	449.51	i	2 mg/kg/udy		0.00003			0.00039					<0.5		<0.5		<1	<1	<1	4 <1
	Terbium Tb407	8.27 g/cm ³			Suspected		1110 1110	1356	NK			0.00005			0.00055					<0.5		-0.5		~1	~1	~1	~1
	Thallium	11.86 g/cm ³			Suspected	279	1229-1238	303	i			0.00007	0.01355		0.01579					<1		<1		<2	<2	<2	<2
54	Thorium 229	11.73 g/cm3			Carcinogen	227		270	i								IARC I	0.000185 pCi/m	3	1.0		5.0		6	3	5	6
	Thulium Tm2O3	9.33 g/cm ³			Suspected			1950	i																		
56	Titanium	4.54 g/cm ³	Group 4	47.9	Carcinogen	310	1287-1294	460	i	0.0001 mg/m3			0.021		2.271688	0.01 ug/m ³	ATSDR	Respiratory		110		76					
57	Tin	7.29 g/cm ³				307	1242-1276	630	i	0.3 mg/kg/day			1200	1200	0.09981					2.0		<1					
	Tungsten	19.25 g/cm ³					1297-1305	950	i											<1		<1					
	Uranium 234	19.05 g/cm ³		238.07	Carcinogen	97	1308-1338	20	i	0.00004 mg/m3										0.6		3.5		<1	<1	2	1
	Vanadium (86%)	6.10 g/cm ³			Carcinogen	200	1348-1364	500	i	0.0001 mg/m3			8.6		0.123043		CAL		0.00034	13		53		50	28	62	54
	Ytterbium Yb2O ₃	6.95 g/cm ³			Suspected	581			NK											<i>c</i> =-							
	Yttrium Y2O ₃	4.47 g/cm ³			Suspected	711	1000 0000	~~~	D	0.2	7.000	0.000006	<i>coc</i>		0.000118					6.70		33.00		7.60	4.8	15	7.8
	Zinc Zirconium	7.14 g/cm ³ 6.51 g/cm ³			Carcinogon	75 701	1369-1382	600 20	1	0.3 mg/kg/day	7400		600 0.16	0.000022	1.96084 0.00032					9		25.0		4	1	280	3
	Hydrogen Cyanide	0.69g/cm ³	Group 4	91.22 179.16	Carcinogen Reproductive	35		20	NK		250		0.16	80	1.3058												
	PM10	0.059/011		1/9.10	Reproductive	33				ICPMS Analysis	230		0.13	30	24 hour av												
	PM2.5				Carcinogen					ICPMS Analysis						Annual Average	e										
	Radionuclides (Uranium)	18.7 g/cm ³	Group 3	3 238.03	Carcinogen	102	1307-1345		i									0.000185 pCi/m	3								
	. ,	-																									

Note 1 USEPA Residential level Average fit healthy 70 kg male inhales 50.4 m3 a day

HBTOM - Handbook of the toxicology of Metals - Nordberg et al Fourth Edition ATSDR Minimum Risk Levels (MRLs December 2019

Explosive Characteristics of Various Dusts* (Continued)

3

Explosive Characteristics	or various Dusts"	(Continued)				
	Ignition temperature of	Minimum igniting	Minimum explosive concentration,	Maximum explosion pressure,	Maximum rate of pressure rise,	Terminal oxygen concentration,
Type of dust	dust cloud, °C	energy, J	oz/ft ³	lb/in ² gage	lb/(m ²)(s)	%†
bounds (Continued):						
C ₆ H ₄ (CO) ₂ NH	630	0.050	0.030	79	4,500	
tartrate, $KHC_4H_4O_6$	520					
e, o-HOC ₆ H ₄ CONHC ₆ H ₅	610	0.020	0.040	61	4,400	
sulfate, anhydrous, Na ₂ S ₂ O ₃	510 470	0.015	0.020	00	10.000	
H) ₂ COOH	470	0.015	0.020	88	10,000+	
H ₂₂ O ₁₁	420	0.040	0.045	82	4,200	14
0% finer than 44 μ m	210	0.020	0.045	56	3,100	14
'g particle size 4 μ m	190	0.015	0.035	78	4,700	12
ylsalicylic acid),	660	0.025	0.050	83	10,000+	
C_6H_4COOH , fine				05	10,000 1	
xahydric alcohol),	460	0.040	0.065	82	2,800	
OH) ₄ CH ₂ OH						
sodium,	520	0.960	0.100	54	500	
Na corbic acid,	460	0.040	0.070	0.0		
sorore aciu,	700	0.060	0.070	88	4,800	15
related compounds:	500	0.045	0.040			
nide c acid	500 460	0.045 0.045	0.040 0.040	94	6,500	
liphenyl-urea	550	0.045	0.040	92 87	4,300	
nilide)		0.000	0.095	07	2,500	
ide (3,5-dinitro-ortho-	500	0.015	0.050	106	10,000-	13
					,	10
	650	0.015	0.045	100	10,000+	2
	420	1.920	0.420	8	100	16
	470	0.060	0.100	90	2,400	
	570	4.000				
-	<u> </u>	0.140	0.230	56	5,000	14_
	900					
	420	0.020	0.100	46	6,000	10
	710		0.100	40	0,000	10
	520	0.020	0.020		10,000+	
	720					
	950+					
	950+ 780	0.080	0.100	107		
	630	0.120	0.100 0.200	106	10,000+	12
	550	0.120	0.200	51	3,700	
-	270	0.005	0.075	48	3,300	0
	630	0.080	0.190	37	1,300	15
	460	0.010	0.045	80	10,000+	0
	950+	0.045	0.070			
6	20 500	0.045 0.060	0.060	53	3,400	
	600	0.640	0.220 0.480	48 48	600	13
	20	0.005	0.045	48 65	1,800 9,000	9 0_
ounds:					2,000	<u>V_</u>
alt	950	0.100	0.180	70	0.500	
per	930	1.920	0.180	78 27	8,500	
	550	0.720	0.500	27 21	500 100	
nesium	430	0.020	0.020	90	10,000	0
el	940	0.080	0.190	79	10,000	14
on, 12% Si	670	0.060	0.040	74	7,500	
e bish sachar	540 700	0.130	0.060	73	10,000+	8
, high-carbon >, medium-carbon	790 450	0.090	2.000			19
% Si	450 860	0.080 0.400	0.130	47	4,200	
ow-carbon	370	0.080	0.420 0.140	87 53	3,600	16
	5.0	0.000	0.140	53	9,500	13

Table 7.1.24 Explosive Characteristics of Various Dusts* (Continued)

Type of dust	Ignition temperature of dust cloud, °C	Minimum igniting energy, J	Minimum explosive concentration, oz/ft ³	Maximum explosion pressure, lb/in ² gage	Maximum rate of pressure rise, lb/(m ²)(s)	Terminal oxygen concentration, %†
Alloys and compounds (Continued):						
Ferrovanadium	440	0.400	1.300			17
Thorium hydride	260	0.003	0.080	60	6,500	6
Titanium hydride	440	0.060	0.070	96	10,000+	13
Uranium hydride	20	0.005	0.060	43	6,500	0
Zirconium hydride	350	0.060	0.085	69	9,000	8
Plastics:						
Acetal resin	440	0.020	0.035	89	4,100	11
(polyformaldehyde)		0.0.00	01055	07	1,100	11
Acrylic polymer resin	480	0.010	0.030	85	6,000	11
Methyl methacrylate-ethyl acrylate		0.010	0.020	00	0,000	*1
Alkyd resin	500	0.120	0.155	15	150	15
Alkyd molding compound		0.120	0.155	15	150	15
Allyl resin, allyl alcohol derivative, CR-39	500	0.020	0.035	106	10,000+	13
Amino resin, urea-formaldehyde molding	450	0.080	0.075	89	3,600	15
compound	100	0.000	0.075	07	5,000	17
Cellulosic fillers, wood flour	430	0.020	0.035	110	5,500	17
Cellulosic resin, ethyl cellulose molding	320	0.010	0.025	102	6,000	11
compound	520	0.010	0.025	102	0,000	11
Chlorinated polyether resin, chlorinated polyether alcohol	460	0.160	0.045	66	1,000	
Cold-molded resin, petroleum resin	510	0.030	0.025	94	4,600	
Coumarone-indene resin	520	0.010	0.015	93	10,000+	14
Epoxy resin	530	0.020	0.020	86	6,000	14
Fluorocarbon resin, fluorethylene polymer	600	0.020	0.020	00	0,000	12
Furane resin, phenol furfural	520	0.010	0.025	90	8,500	14
Ingredients, hexamethylenetetramine	410	0.010	0.015	98	10,000+	14
Miscellaneous resins, petrin acrylate	220	0.020	0.045	104	10,000+	14
monomer						
Natural resin, rosin, DK	390	0.010	0.015	87	10,000+	14
Nylon polymer resin	500	0.020	0.030	89	7,000	13
Phenolic resin, phenol-formaldehyde	500	0.020	0.030	92	10,000+	14
molding compound						
Polycarbonate resin	710	0.020	0.025	78	4,700	15
Polyester resin, polyethylene terephthalate	500	0.040	0.040	91	5,500	13
Polyethylene resin	410	0.010	0.020	83	5,000	12
Polymethylene resin, carboxypolymethylene	520	0.640	0.115	70	5,500	
Polypropylene resin	420	0.030	0.020	76	5,000	
Polyurethane resin, polyurethane foam	510	0.020	0.025	88	3,700	
Rayon (viscose) flock	520	0.240	0.025	88	1,700	
Rubber, synthetic	320	0.030	0.030	93	3,100	15
Styrene polymer resin, polystyrene latex	500	0.020	0.020	91	7,000	13
Vinyl polymer resin, polyvinyl butyral	390	0.010	0.020	84	2,000	13

* Data taken from the following Bureau of Mines Reports of Investigations: RI 5753, "Explosibility of Agricultural Dusts"; RI 5971, "Explosibility of Dusts Used in the Plastics Industry"; RI 6516, "Explosibility of Metal Powders"; RI 7132, "Dust Explosibility of Chemicals, Drugs, Dyes and Pesticides"; RI 7208, "Explosibility of Miscellaneous Dusts." The data were obtained using $L_{\rm problem}$ by the composition of the composit

Experiments show the maximum rate of pressure rise in a highly turbulent dust-air mixture can be as much as 8 times higher than in a nonturbulent mixture (BuMines Repts. Inv. 5815 and 7507 and Nagy and Verakis).

Moisture and Other Inerts Moisture in a dust absorbs heat and tends to reduce the explosibility of a dust. A high concentration of moisture in the dust also tends to reduce the dispersibility of a dust. An increase in moisture content causes an increase in ignition temperature and a reduction in maximum pressure and rates of pressure rise. However, the amount of moisture required to produce a marked lowering of the explosibility parameters is higher than can ordinarily be tolerated in industrial processes. Most mineral inert dusts admixed with a combustible absorb heat during the combustion reaction and reduce explosibility similar to the action of water. Some chemical compounds, such as sodium and potassium carbonates, act as inhibitors and are more effective than mineral inerts; the limiting inert dust concentration required to prevent ignition and explosion depends on the strength of the igniting source.

Atmospheric Oxygen Concentration The pressure and rate of pressure development decrease as the oxygen concentration in the atmosphere decreases. The ignition sensitivity of dusts decreases with decrease in oxygen concentration and for most dusts, ignition and explosion can be prevented by reducing the oxygen concentration to a safe value. Carbon dioxide, nitrogen, argon, helium, and water vapor are effective diluents. For highly reactive metal powders, only argon and helium are chemically inert. Limiting oxygen concentrations using carbon dioxide as a diluent are given in Table 7.1.24 for many dusts. With carbon dioxide as a diluent, a reduction of oxygen in the atmosphere to 11 percent is sufficient to prevent ignition by sparks for all dusts tested except the metallic powders. With nitrogen as the diluent, ignition of nonmetallic dusts is prevented by diluting the atmosphere to 8 percent oxygen. Some metal dusts, such as magnesium, titanium, and zirconium, ignite by spark in a pure carbon dioxide atmosphere. Freon and halons are sometimes used as diluent gases, but if metal dusts are involved, they can intensify rather than suppress ignition. The limiting oxygen concentration decreases as the dust becomes finer in particle