Amy Selvaraj (DELWP)

From:	Andrew Helps
Sent:	Monday, 8 March 2021 12:10 PM
To:	Amy Selvaraj (DELWP)
Subject:	Fingerboards Human Health Risk Assessment Table 9.7 Page 82 - the need for a standardised toxicity standard
Attachments:	HHRA Page 82.pdf; 22941-R01 Rev 1.pdf; ATSDR SPL data for KALBAR Relevent Metals.pdf

EXTERNAL SENDER: Links and attachments may be unsafe.

Amy,

I have grave concerns with this document, it is deceptive and misleading.

I had a quick look at this document late last week and the cerebral alarm bells started to go off when I got to page 82 and looked at Table 9.7.

Table 9.7 claims to provide technical guidance on overburden leachate concentrations if and when the KALBAR mine starts operating.

This table is on page 82 of the so called Human Health Risk Assessment.

It would appear that the Consultants at Coffey do not understand that there is a few more than 14 metals in the KALBAR waste water.

Our testing produced data on $\underline{40 \text{ metals}}$ in the water for the same cost.

Clearly Coffee would have this data so why not publish it?

It is of great concern to me that the lab report that Coffey get from the lab is at ug/L level and then somebody then manually converts and retypes these results to mg/L to make the figures look smaller.

What concerned me was the comments below the table 9.7 that infer that this leachate water is basically safe to drink (by whom lower forms of algae?).

I suppose it will be some comfort to the local farmers that the mine water will quickly eliminate rabbits, Kangaroos, Wombats and mosquito's in the area.

Also of concern is that they have done the testing in mg/L when all the ICP-MS machines actually live and work in micrograms (ug/L).

So somebody in Coffey sits down and takes the Envirolab report and converts it by hand to mg/L! Can you formally ask KALBAR to produce the original Envirolab report that underpins Table 9.7.

I am suggesting that you obtain this report as part of your Departments normal due diligence actions and then on-send it to me.

So Coffey publish a report with 14 metals in the water – this makes the assessment a lot easier and the resultant tables much smaller and client friendly.

Coffey seem to have some form of view that God made all these toxic elements to only be toxic to three decimal points at Mg/L level!

Even the poorer countries in Asia assess these risk according to the Hazard Index (Hi) where the default index is Zero and testing is at ug/L.

You calculate the index by Quantity of the Chemical/metal by the Theoretical daily dose (TDD) for a fit health 70kg male. The TDD date is available from the American ATSDR and is regarded as best practice by almost every develop country except Australia.

The ATSDR TDD data for KALBAR Relevant metals is attached.

So our recent Water Analysis at Lindenow had one sample with total Chromium in the water at 48 ug/L So you divide 48/0.20702 and you get a Hazard Index of 231 - a safe level would be 1.

Why is it the KALBAR Consultants Coffey have not put Hazard Index numbers in Table 9.7? I think that you can figure that out without much effort.

Could you, as a matter of urgency, formally ask KALBAR to produce a version of table 9.7 that contains the full spectrum of 40 metals.

The Radionuclides (RADNUCS) section which starts on page 82 is at best deceptive and misleading and KALBAR need to get professional help to produce a document that articulates the true situation with RADNUCS. I have run a couple of major radionuclide pollution incidents for Global NGO's over the last 40 years (I led the team that went into Chernobyl near Kiev in the USSR).

It is my professional opinion that the KALBAR reports on this subject are very poor. This is a pity because the US EPA publishes a Rare Earth Element Review (EPA-600/R 572 dated December 2012) that could provide some good guidance.

I am advised by the Health Department that the public examination of the EES could be now be held in a public forum situation as has always happened in the past.

I would respectfully suggest that examination of KALBAR and their consultants in technical areas that could impact the Lindenow community should now be held in the Hall at Lindenow. I look forward to receipt of an email with tentative dates for public examination of KALBARS witnesses at Lindenow Public Hall from IAC.

I look forward to your prompt response.

Kindest Regards

Andrew Helps

Mobile UNEP Global Mercury Partnership Waste Management Partnership - designated expert Mercury added products and alternatives – designated expert Mercury Fate and Transport Group

IMPORTANT PLEASE READ: This email may contain confidential and or proprietary information and may be protected by the rules of legal privilege. If you receive this email by mistake, or are not the intended recipient you must not use it or the information in any way. If this is the case, could you please inform the sender by return email or by telephoning and delete any such email from your computer. This email and any attachments, has been scanned for computer viruses but you should also perform your own scan. No liability is accepted for any loss or damage, whether caused by our negligence or otherwise, that results from a computer virus or a defect in the transmission of this email or the attached file.

Metals

Leachability results for fine tailings material was reported by EGi (2020) and have been adopted as the anticipated quality of fine tailings water. Fine tailings leachate water quality did not exceed drinking water health criteria. Leachable concentrations of aluminium (0.07 mg/L¹) and iron (0.09 mg/L¹), whilst not considered to pose a potential health risk, may create aesthetic issues (such as taste or colour) if present in drinking water.

The COPC measured in leachate are compared with Tier 1 screening criteria in Table 9.7.

scree	Tier 1	Leachate concentration [mg/L]							
	screening criteria	Fine ta	ailings	ilings Sand tailings		Heavy mineral concentrate		Overburden gravelly clay	Overburden sandy clay
		Oct 2018	Nov 2018	Oct 2018	Nov 2018	Oct 2018	Nov 2018	Oct	2018
Antimony	0.003	-	<0.001	-	<0.001	-	<0.001	-	-
Arsenic	0.01	0.007	0.009	0.002	0.005	0.003	0.004	0.006	0.003
Barium	2	-	0.005	-	0.003	-	0.003	-	-
Boron	4	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Cadmium	0.002	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0001	<0.0001
Chromium VI	0.05 ⁽¹⁾	-	<0.005	-	<0.005	-	0.034	-	-
Copper	2	0.001	0.002	<0.001	<0.001	<0.001	0.002	0.007	0.004
Lead	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	0.008	0.004
Manganese	0.5	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.029	<0.005
Mercury	0.001	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005
Molybdenum	0.05	0.002	0.003	<0.001	<0.001	0.001	0.001	0.001	<0.001
Nickel	0.02	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	0.016	0.004
Selenium	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Zinc	3	0.001	0.002	<0.001	0.003	<0.001	0.002	0.029	0.015

Table 9.7 Tailings, heavy mineral concentrate and overburden leachate concentrat	ions [mg/L]
--	-------------

¹ Based on hexavalent chromium.

Predicted concentrations of dissolved metals, based on measured concentrations in leachate associated with fine tailings, sand tailings, heavy mineral concentrate and overburden soils are all below the Tier 1 screening criteria for drinking water and recreational water. On this basis, leachate water is not considered to represent a risk to potable water supply via a groundwater infiltration pathway.

In addition to the potential release of metal contaminants, ore processing uses minimal amounts of additives (primarily flocculants). Seepage water quality is unlikely to be significantly different from natural groundwater recharge that would infiltrate through the unmined ore.

Radionuclides

The potential for significant migration of radionuclides from the rehabilitated tailings site into a groundwater aquifer that might be used for drinking, for stock use, or crop irrigation was evaluated qualitatively by SGS (2020). The potential for long-term impact on radioactivity levels in groundwater arising from mining, mineral processing and the disposal of tailings and other waste was found to be unlikely to change significantly from current conditions. The following assumptions were made in the assessment:

 Groundwater monitoring wells installed within the project area provided a very low yield and the minimal groundwater able to be extracted would not be sufficient for agriculture or any other use.

Coffey, A Tetra Tech Company 754-ENAUABTF11607_HHRA_Rev0 August 2020

82

CERTIFICATE OF ANALYSIS 22941

Client Details	
Client	Andrew Helps
Attention	Andrew Helps
Address	VIC

Sample Details	
Your Reference	F01-11 Lindenow
Number of Samples	2 Water, 3 Sand, 1 Sludge
Date samples received	14/10/2020
Date completed instructions received	14/10/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details					
Date results requested by	16/10/2020				
Date of Issue	20/10/2020				
Reissue Details	This report supersedes 22941_R00 due to addition of Sulphur on all samples.				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISO	/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

<u>Results Approved By</u> Chris De Luca, Operations Manager

Authorised By

Pamela Adams, Laboratory Manager

Acid Extractable metals in soil					
Our Reference		22941-2	22941-3	22941-5	22941-6
Your Reference	UNITS	L-26	L-27	L-29	L-30
Date Sampled		13/10/2020	13/10/2020	13/10/2020	13/10/2020
Type of sample		Sand	Sand	Sludge	Sand
Date digested	-	14/10/2020	14/10/2020	14/10/2020	14/10/2020
Date analysed	-	15/10/2020	15/10/2020	15/10/2020	15/10/2020
Silver	mg/kg	<1	<1	<1	<1
Aluminium	mg/kg	13,000	4,700	28,000	14,000
Antimony	mg/kg	<7	<7	<7	<7
Arsenic	mg/kg	5	<4	8	4
Boron	mg/kg	<3	<3	15	<3
Barium	mg/kg	18	15	58	22
Beryllium	mg/kg	<1	<1	<1	<1
Bismuth	mg/kg	<1	<1	<1	<1
Cadmium	mg/kg	<0.4	<0.4	<0.8	<0.4
Cobalt	mg/kg	2	1	8	3
Chromium	mg/kg	19	8	34	20
Copper	mg/kg	<1	<1	570	<1
Caesium*	mg/kg	<1	<1	<1	<1
Gallium	mg/kg	4	2	13	6
Gold*	mg/kg	<1	<1	<1	<1
Iron	mg/kg	30,000	12,000	37,000	26,000
Lanthanum*	mg/kg	16	9	27	15
Lead	mg/kg	10	4	29	11
Lithium	mg/kg	4	1	11	5
Manganese	mg/kg	33	10	190	31
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1
Molybdenum	mg/kg	<1	<1	<1	<1
Nickel	mg/kg	4	1	15	4
Selenium	mg/kg	<2	<2	<2	<2
Strontium	mg/kg	5	2	31	4
Sulphur	mg/kg	150	31	5,700	160
Tellurium	mg/kg	<1	<1	<1	<1
Thallium	mg/kg	<2	<2	<2	<2
Tin	mg/kg	<1	<1	2	<1
Titanium	mg/kg	7	9	61	6
Thorium	mg/kg	6	3	5	6
Uranium	mg/kg	<1	<1	2	1
Vanadium	mg/kg	50	28	62	54
Yttrium*	mg/kg	7.6	4.8	15	7.8

Acid Extractable metals in soil					
Our Reference		22941-2	22941-3	22941-5	22941-6
Your Reference	UNITS	L-26	L-27	L-29	L-30
Date Sampled		13/10/2020	13/10/2020	13/10/2020	13/10/2020
Type of sample		Sand	Sand	Sludge	Sand
Zinc	mg/kg	4	1	280	3

Moisture					
Our Reference		22941-2	22941-3	22941-5	22941-6
Your Reference	UNITS	L-26	L-27	L-29	L-30
Date Sampled		13/10/2020	13/10/2020	13/10/2020	13/10/2020
Type of sample		Sand	Sand	Sludge	Sand
Date prepared	-	14/10/2020	14/10/2020	14/10/2020	14/10/2020
Date analysed	-	15/10/2020	15/10/2020	15/10/2020	15/10/2020
Moisture	%	2.9	14	88	7.3

All metals in water - total			
Our Reference		22941-1	22941-4
Your Reference	UNITS	L-25	L-28
Date Sampled		13/10/2020	13/10/2020
Type of sample		Water	Water
Date prepared	-	14/10/2020	14/10/2020
Date analysed	-	14/10/2020	14/10/2020
Silver-Total	µg/L	<1	<1
Aluminium-Total	µg/L	12,000	43,000
Arsenic-Total	µg/L	3	4
Boron-Total	µg/L	30	60
Barium-Total	µg/L	37	150
Beryllium-Total	µg/L	<0.5	3
Bismuth-Total	µg/L	<1	<1
Cadmium-Total	µg/L	<0.2	<0.2
Cerium-Total*	µg/L	14	66
Cobalt-Total	µg/L	1	6
Chromium-Total	µg/L	11	48
Copper-Total	µg/L	<2	5
Caesium-Total*	µg/L	<1	2
Gallium-Total	µg/L	3	15
Mercury-Total	µg/L	<0.05	<0.05
Iron-Total	µg/L	8,100	30,000
Lanthanum-Total	µg/L	9	43
Lithium-Total	µg/L	3	15
Manganese-Total	µg/L	120	93
Molybdenum-Total	µg/L	<1	<1
Niobium-Total*	µg/L	2.7	2.4
Nickel-Total	µg/L	4	12
Lead-Total	µg/L	6	30
Rubidium-Total*	µg/L	8	31
Rhenium-Total*	µg/L	<1	<1
Antimony-Total	µg/L	<1	<1
Scandium-Total*	µg/L	<1	8
Selenium-Total	µg/L	<1	2
Tin-Total	µg/L	2	<1
Strontium-Total	µg/L	28	69
Tantalum-Total*	µg/L	<1	<1
Tellurium-Total*	µg/L	<0.5	<0.5
Thorium-Total	µg/L	1	5.0
Thallium-Total	μg/L	<1	<1

All metals in water - total			
Our Reference		22941-1	22941-4
Your Reference	UNITS	L-25	L-28
Date Sampled		13/10/2020	13/10/2020
Type of sample		Water	Water
Titanium-Total	μg/L	110	76
Uranium-Total	μg/L	0.6	3.5
Vanadium-Total	μg/L	13	53
Tungsten-Total	μg/L	<1	<1
Yttrium-Total*	μg/L	6.7	33
Zinc-Total	µg/L	9	25

Metals in Waters - Total			
Our Reference		22941-1	22941-4
Your Reference	UNITS	L-25	L-28
Date Sampled		13/10/2020	13/10/2020
Type of sample		Water	Water
Date prepared	-	20/10/2020	20/10/2020
Date analysed	-	20/10/2020	20/10/2020
Sulfur -Total	mg/L	2.0	3.6

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105 deg C for a minimum of 12 hours.
Metals-020 ICP-AES	Determination of various metals by ICP-AES.
Metals-021 CV-AAS	Determination of Mercury by Cold Vapour AAS.
Metals-021 CV-AAS	Determination of Mercury by Cold Vapour AAS.
Metals-022 ICP-MS	Determination of various metals by ICP-MS.

QUALITY CON1	ROL: Acid E	Extractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date digested	-			14/10/2020	3	14/10/2020	14/10/2020		14/10/2020	
Date analysed	-			15/10/2020	3	15/10/2020	15/10/2020		15/10/2020	
Silver	mg/kg	1	Metals-020 ICP- AES	<1	3	<1	<1	0	98	
Aluminium	mg/kg	10	Metals-020 ICP- AES	<10	3	4700	3600	27	98	
Antimony	mg/kg	7	Metals-020 ICP- AES	<7	3	<7	<7	0	102	
Arsenic	mg/kg	4	Metals-020 ICP- AES	<4	3	<4	<4	0	108	
Boron	mg/kg	3	Metals-020 ICP- AES	<3	3	<3	<3	0	89	
Barium	mg/kg	1	Metals-020 ICP- AES	<1	3	15	11	31	104	
Beryllium	mg/kg	1	Metals-020 ICP- AES	<1	3	<1	<1	0	109	
Bismuth	mg/kg	1	Metals-020 ICP- AES	<1	3	<1	<1	0	91	
Cadmium	mg/kg	0.4	Metals-020 ICP- AES	<0.4	3	<0.4	<0.4	0	104	
Cobalt	mg/kg	1	Metals-020 ICP- AES	<1	3	1	1	0	103	
Chromium	mg/kg	1	Metals-020 ICP- AES	<1	3	8	7	13	103	
Copper	mg/kg	1	Metals-020 ICP- AES	<1	3	<1	<1	0	101	
Caesium*	mg/kg	1	Metals-020 ICP- AES	<1	3	<1	<1	0	100	
Gallium	mg/kg	1	Metals-020 ICP- AES	<1	3	2	2	0	115	
Gold*	mg/kg	1	Metals-020 ICP- AES	<1	3	<1	<1	0	99	
Iron	mg/kg	10	Metals-020 ICP- AES	<10	3	12000	13000	8	99	
Lanthanum*	mg/kg	1	Metals-020 ICP- AES	<1	3	9	8	12	111	
Lead	mg/kg	1	Metals-020 ICP- AES	<1	3	4	4	0	98	
Lithium	mg/kg	1	Metals-020 ICP- AES	<1	3	1	1	0	90	

QUALITY CONT	ROL: Acid E	Extractab	le metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Manganese	mg/kg	1	Metals-020 ICP- AES	<1	3	10	12	18	105	[NT]
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	3	<0.1	<0.1	0	110	[NT]
Molybdenum	mg/kg	1	Metals-020 ICP- AES	<1	3	<1	<1	0	100	[NT]
Nickel	mg/kg	1	Metals-020 ICP- AES	<1	3	1	1	0	99	[NT]
Selenium	mg/kg	2	Metals-020 ICP- AES	<2	3	<2	<2	0	100	[NT]
Strontium	mg/kg	1	Metals-020 ICP- AES	<1	3	2	2	0	107	[NT]
Sulphur	mg/kg	10	Metals-020 ICP- AES	<10	3	31	33	6	105	[NT]
Tellurium	mg/kg	1	Metals-020 ICP- AES	<1	3	<1	<1	0	98	[NT]
Thallium	mg/kg	2	Metals-020 ICP- AES	<2	3	<2	<2	0	97	[NT]
Tin	mg/kg	1	Metals-020 ICP- AES	<1	3	<1	<1	0	99	[NT]
Titanium	mg/kg	1	Metals-020 ICP- AES	<1	3	9	9	0	108	[NT]
Thorium	mg/kg	2	Metals-022 ICP-MS	<2	3	3	2	40	106	[NT]
Uranium	mg/kg	1	Metals-022 ICP-MS	<1	3	<1	<1	0	107	[NT]
Vanadium	mg/kg	1	Metals-020 ICP- AES	<1	3	28	31	10	102	[NT]
Yttrium*	mg/kg	1	Metals-020 ICP- AES	<1	3	4.8	4.5	6	98	[NT]
Zinc	mg/kg	1	Metals-020 ICP- AES	<1	3	1	<1	0	102	[NT]

QUALIT	Y CONTROL: All r	netals in	water - total			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			16/10/2020	[NT]		[NT]	[NT]	16/10/2020	
Date analysed	-			16/10/2020	[NT]		[NT]	[NT]	16/10/2020	
Silver-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	105	
Aluminium-Total	µg/L	10	Metals-022 ICP-MS	<10	[NT]		[NT]	[NT]	106	
Arsenic-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	105	
Boron-Total	µg/L	20	Metals-022 ICP-MS	<20	[NT]		[NT]	[NT]	107	
Barium-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	106	
Beryllium-Total	µg/L	0.5	Metals-022 ICP-MS	<0.5	[NT]		[NT]	[NT]	103	
Bismuth-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	119	
Cadmium-Total	µg/L	0.1	Metals-022 ICP-MS	<0.1	[NT]		[NT]	[NT]	105	
Cerium-Total*	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	102	
Cobalt-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	105	
Chromium-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	102	
Copper-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	106	
Caesium-Total*	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	104	
Gallium-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	103	
Mercury-Total	µg/L	0.05	Metals-021 CV-AAS	<0.05	[NT]		[NT]	[NT]	85	
Iron-Total	µg/L	10	Metals-022 ICP-MS	<10	[NT]		[NT]	[NT]	103	
Lanthanum-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	101	
Lithium-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	105	
Manganese-Total	µg/L	5	Metals-022 ICP-MS	<5	[NT]		[NT]	[NT]	105	

QUALITY	CONTROL: All	metals in	n water - total			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Molybdenum-Total	μg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	104	[NT]
Niobium-Total*	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	111	[NT]
Nickel-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	104	[NT]
Lead-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	104	[NT]
Rubidium-Total*	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	105	[NT]
Rhenium-Total*	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	108	[NT]
Antimony-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	110	[NT]
Scandium-Total*	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	108	[NT]
Selenium-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	104	[NT]
Tin-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	106	[NT]
Strontium-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	103	[NT]
Tantalum-Total*	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	102	[NT]
Tellurium-Total*	µg/L	0.5	Metals-022 ICP-MS	<0.5	[NT]		[NT]	[NT]	102	[NT]
Thorium-Total	µg/L	0.5	Metals-022 ICP-MS	<0.5	[NT]		[NT]	[NT]	95	[NT]
Thallium-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	104	[NT]
Titanium-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	103	[NT]
Uranium-Total	µg/L	0.5	Metals-022 ICP-MS	<0.5	[NT]		[NT]	[NT]	101	[NT]
Vanadium-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	102	[NT]
Tungsten-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	107	[NT]
Yttrium-Total*	μg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	101	[NT]

QUALITY CO	NTROL: All	metals in	water - total			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Zinc-Total	µg/L	1	Metals-022 ICP-MS	<1	[NT]			[NT]	106	[NT]

QUALITY CC	NTROL: Me	tals in Wa	aters - Total			Duj	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			20/10/2020	[NT]		[NT]	[NT]	20/10/2020	
Date analysed	-			20/10/2020	[NT]		[NT]	[NT]	20/10/2020	
Sulfur -Total	mg/L	0.5	Metals-020 ICP- AES	<0.5	[NT]	[NT]	[NT]	[NT]	110	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

METALS: The PQL has been raised for Cadmium & Copper due to the sample matrix requiring dilution.

PQL has been raised for Cadmium due to the high moisture content in the sample, resulting in a high dilution factor.

Theoretical Dose Used (Yeb\3m) (DOT)	0.07113	0.33153	0.05109	0.82422	1.30565	0.06780	0.39114	7947.53787	2.00056	0.25551										0.47117					0.61652 1 62443	0.03795	0.12304			21.85683		0.02901				0.10261	0.09981	0.07630	2.27169 0.7470	1.68535	0.40442	0.16814			3.17028	0.01829	0.00027			0.00039			
Air GMMC (£m\gm)	0.00007	0.00243	0.00314	0.00000	0.07093	0.00003	0.00462	529.80386	0.00260	0.00059										0.00091					0.00108	0.00002	0.00020			0.02715		0 0003				0.00012	0.00012	0.00002	0.00008	00000						0.00122	0.00002			0.00003			
(8א/kg) Soil GMMC	48.63636	884.79106	2.71690 19 40584	46.31430	27.02039	17.07890	90.24526	2.13089	1400.12252	198.07556										431.11606					426.64488 1219 24985	5.36217	57.46577			103.78191		8 75419	01110			75.25725	6.04104 96.69555	19.11067	58.79488 E6.17743	181.03419	104.50714	299.78167			396.33319								
Water GMMC) Water GMMC	0.06030	0.11817	0.00350	0.81491	0.23628	0.06399	0.30382	0.48000	1.68153	0.20702										0.37123					0.51499	0.03657	0.10855			21.42883		0 02696	00000			പറ	0.01358 0.07865	0.07213	2.25872	1.64915	0.38352	0.10818			3.09101								
Toxicity			,					10		5000	-1	. 4					-			5000		1			1000	100		10	10	1000		1000	1			5000	1000	5000	1000	5000	1000	1000	10	10	2000	5000	1000	1000	1000	1000	100	5000	5000
CAS Registry Number	7440-38-2	7439-92-1	7439-97-6	18540-29-9	57-12-5	7440-48-4	7440-02-0	1333-82-U 74-82-8	7440-66-6	7440-47-3	13982-63-3 7440-61-1	7440-14-4	7440-29-1	15262-20-1	14269-63-7	1511/-96-1 14274-82-9		15117-48-3	-52-		14255-04-0	12172-73-5	7440-07-5 10098-97-2		7440-39-3 7420-06-5	7782-49-2	7440-62-2	7738-94-5	13966-00-2	15623-47-9 14797-55-8	7778-39-4	1327-53-3 7440-22-4	7784-42-1	7487-94-7 7784-46-5	13968-55-3	7440-36-0	7440-28-0 7440-31-5	120-12-7	7440-32-6	7440-42-8	7439-93-2	16065-83-1 143-33-9	1317-36-8	7446-70-0	1314-13-2 18496-25-8	7704-34-9	7440-74-6 15092-94-1	10028-17-8	7440-33-7	13494-80-9	10198-40-0	7440-45-1 7440-00-8	7429-91-6
ameN Substance	ARSENIC	LEAD	MERCURY	CADIMIUM CHROMILIM HEXAVALENT	CYANIDE	COBALT	NICKEL	CHROMIUM(VI) TRIOXIDE METHANE	ZINC	CHROMIUM	RADIUM-226	RADIUM	THORIUM	RADUN RADIUM-228	THORIUM-230	URANIUM-235 THORIUM-228	RADON-222	URANIUM-234 bi i i tronii i m-239	UM-21	COPPER	PLUTONIUM-238 LEAD-210	AMOSITE ASBESTOS			BARIUM	MANGANESE SELENIUM	VANADIUM	CESIUM-13/ Chromic Acid	POTASSIUM-40	THORIUM-227 NITRATE	ARSENIC ACID	ARSENIC TRIOXIDE	SILVER ARSINE		URANIUM-233	ANTIMONY	THALLIUM	ANTHRACENE	TTANIUM	MULYBDENUM	LITHIUM	CHROMIUM, TRIVALENT		ALUMINUM CHLORIDE	ZINC OXIDE SULFIDE	SULFUR	INDIUM	TRITIUM	TUNGSTEN	GERMANIUM TELLURIUM	COBALT-60	CERIUM NEODYMIUM	DYSPROSIUM
Rank		2		/ [52 (99 69			95		· -	108 108		110 1		113 1			121 122		123			140 147		217		225					239 239	244	311	312	313	334 337			356				448	470	478	479 496	500	570 573	575
Year	2019	2019	2019	2019	2019	2019	2019	2019 2019	2019	2019	2019	2019	2019	2019	2019	2019 2019	2019	2019	2019	2019	2019 2019	2019	2019	2019	2019	2019	2019	2019	2019	2019	2019	2019	2019	2019	2019	2019	2019	2019	2019	2019 2019	2019	2019	2019	2019	2019 2019	2019	2019	2019	2019	2019 2019	2019	2019 2019	2019

(Yeb\3m) (OO
əso D yli sD
Theoretical
Air GMMC (Em\am)

Yeb\am) (OOT)				[]		12			75	8	34	43		41	6(64	748	575	12	32
Theoretical Daily Dose				0.00011		0.00012			18.14875	0.00268	35.96134	14.77943		19.22941	60000.0	60.21764	151.13748	740.34675	0.00012	0.00032
Air GMMC (٤m\ambda)				0.00001					0.01626	0.00018	0.09072			0.37635	0.00001	0.32500	0.99375	0.12563	0.00001	0.00002
(גנ) (שנאאנ) Soil GMMC						0.46900			33072.13825		6317.86906			1379.44670			819.01805	4588.94808	0.10488	
Water GMMC (ng/L)						0.00002			11.29038		33.33691	14.77943		13.30819		55.34264	136.06748	737.54456		
τοχίζτ	5000	5000	5000	5000	5000	1000	1000	50000	50000	50000	50000	50000	50000	50000	50000	50000	50000	50000	50000	50000
CAS Registry Number	7440-10-0	7440-19-9	7440-64-4	7440-55-3	7440-20-2	496-11-7	1309-64-4	7440-46-2	7439-89-6	7439-91-0	7439-95-4	7727-37-9	10024-97-2	7440-09-7	7440-17-7	7440-21-3	7440-23-5	14808-79-8	7440-65-5	7440-67-7
əmeV əmeN	PRASEODYMIUM	SAMARIUM	YTTERBIUM	GALLIUM	SCANDIUM	INDAN	ANTIMONY TRIOXIDE	CESIUM	IRON	LANTHANUM	MAGNESIUM	NITROGEN	NITROGEN OXIDE	POTASSIUM	RUBIDIUM	SILICON	SODIUM	SULFATE	YTTRIUM	ZIRCONIUM
AnsA	575	575	581	583	584	585	612	711	711	711	711	711	711	711	711	711	711	711	711	711
YeəY	2019	2019	2019	2019	2019	2019	2019	2019	2019	2019	2019	2019	2019	2019	2019	2019	2019	2019	2019	2019