Conceptual surface water management strategy and water balance

Care and a second

Scope

- Describe surface water management objectives
- Describe surface water management concepts
- Demonstrate that the proposed water management concepts will be effective, through a water balance model

Surface water catchments

• Segregate water Undisturbed Mine contact according to water runoff runoff quality Sediment Process laden runoff water Fresh water Groundwater

 Manage discharges from the site based on sensitivity of the receiving environment

Mitchell River

Perry River

 Maintain downstream flows

Mitchell River

Perry River

 Maintain water supply for the mining operation

Water management dams

•••••• Construction —— Mine Contact —— Undisturbed •••••• Decommisioning

Dam Number

Water management dams – Year 8

Data used in the water balance model

Typical water volumes Out

Typical water volumes In

Data used in the water balance model

• Mitchell River flow data from 1938-2017

Groundwater use

Water management components

Mine water supply components

Mine contact runoff components

Treated mine contact water dilution

• Treated water assumed suitable for discharge

Probability of spill

 Four years in the historical record had rainfall sequences which would cause Mitchell River catchment water management dams to spill for the year 8 layout

Year	Number of days spilling	Average discharge (ML/d)
1950	4	6.5
1974	2	6.5
1978	17	45.6
2007	8	6.3

1978 spill event dissection

Probability of spill to the Perry River

Probability of spill to the Mitchell River

Climate change

Climate Year	Existing conditions		Climate change scenario	
	Number of spillway discharge days per year	Average spillway discharge (ML/day)	Number of spillway discharge days per year	Average discharge spillway (ML/day)
1978	13	13.7	12	14.5
2007	1	0.8	4	2.3

S

Conclave discussions

- Historical climate vs stochastic climate
- Evaluation of other climate change events other than the median

- SW38: Surface water ponding on post-mining landforms will be avoided, where practicable, through appropriate slope profile design and topsoil treatments.
- SW39: The downhill side of containment structures, such as surface water drains and road batters, will undergo soil conditioning and be spread with topsoil and revegetated as soon as practicable to minimise erosion and sediment laden runoff.

Prior to commencement of mining

- Update the model as new information becomes available, eg
 - Continue monitoring streamflow and site runoff
 - Revisit runoff calibration after winter rains
 - Include increased mine plan granularity
 - Include details of pipe and pump capacity as design engineering progresses
 - Include the results of any seepage rate investigations
 - Include the results of any centrifuge efficiency investigations
- Create a new model suitable for tracking and predicting day-to-day water movements during mine site operations

