Experience comes to life when it is powered by expertise

Karen Teague

Fingerboards Mineral Sands Project, IAC hearings 2021

Contents

Scope of work and methodology	1
Conceptual site model development	2
Outcomes of the baseline HHRA	3
Outcomes of the predicted HHRA	4
Key issues raised in submissions/experts	5

01 HHRA purpose, scope and methodology

Human Health Risk Assessment scope overview

• Outline of scope

- The scope of the HHRA includes a desktop review of relevant project reports, specialist reports and investigations conducted to date to inform the EES.
 - Compilation of the data and information collected for other EES technical studies to develop a conceptual site model.
 - Undertake a baseline evaluation of existing conditions to off-site populations associated with identified chemical and radionuclide hazards in environmental media.
 - Conduct an evaluation of potential health risks associated with predicted off-site conditions to identified off-site populations as a result of Project activities.

Risk assessment methodology

Issues Identification

What are we trying to find out?

What are the sources and hazards associated with the project? Problem formulation

Data collection and evaluation

Collection and analyses of relevant site data
Development of conceptual site model
Evaluate uncertainties

Exposure assessment

Analyses of contaminant releases
Identification of potential exposure pathways

- Tier 1 Health screening assessment
 - Comparison with appropriate screening criteria
- Tier 2 Health screening assessment
 - Quantitative evaluation using site specific inputs

Evaluate uncertainties

Toxicity assessment

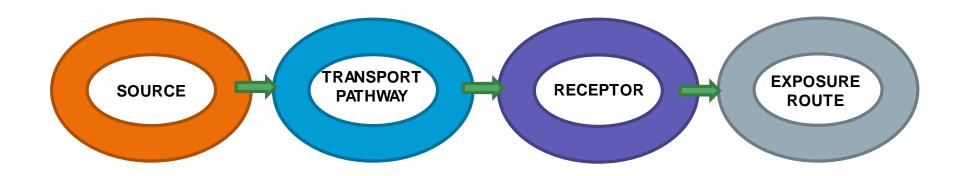
Review qualitative and quantitative toxicity information Evaluate uncertainties

Risk Characterisation

Characterise potential for adverse health effects to occur Summarise risk information and evaluation Evaluate uncertainty

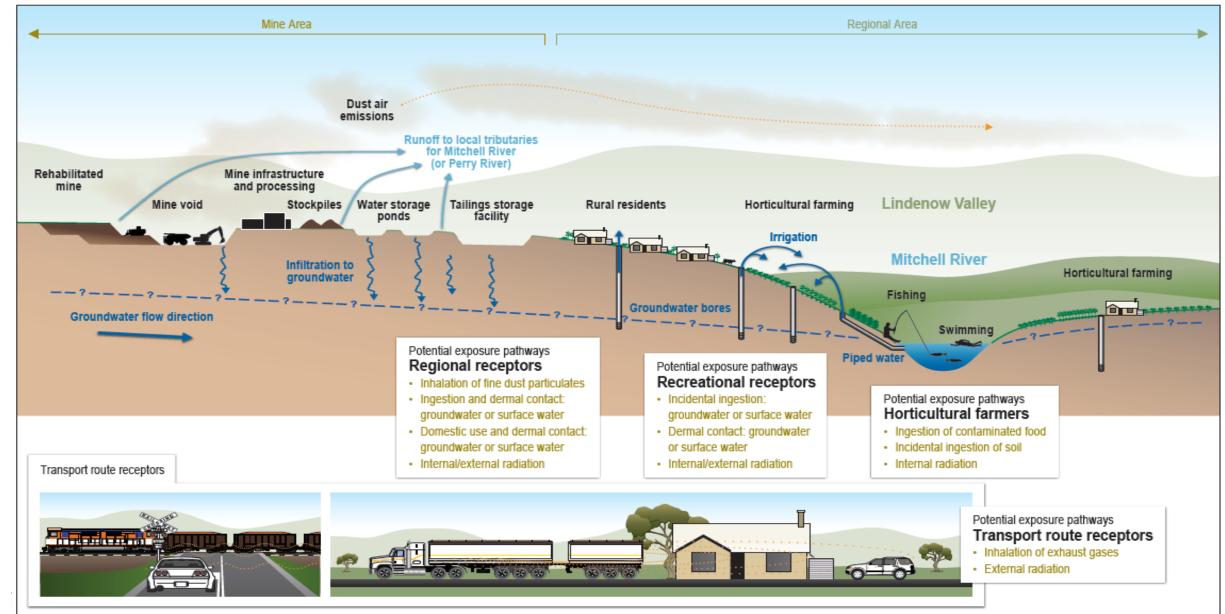
Risk Communication and Risk Management

Key studies reviewed

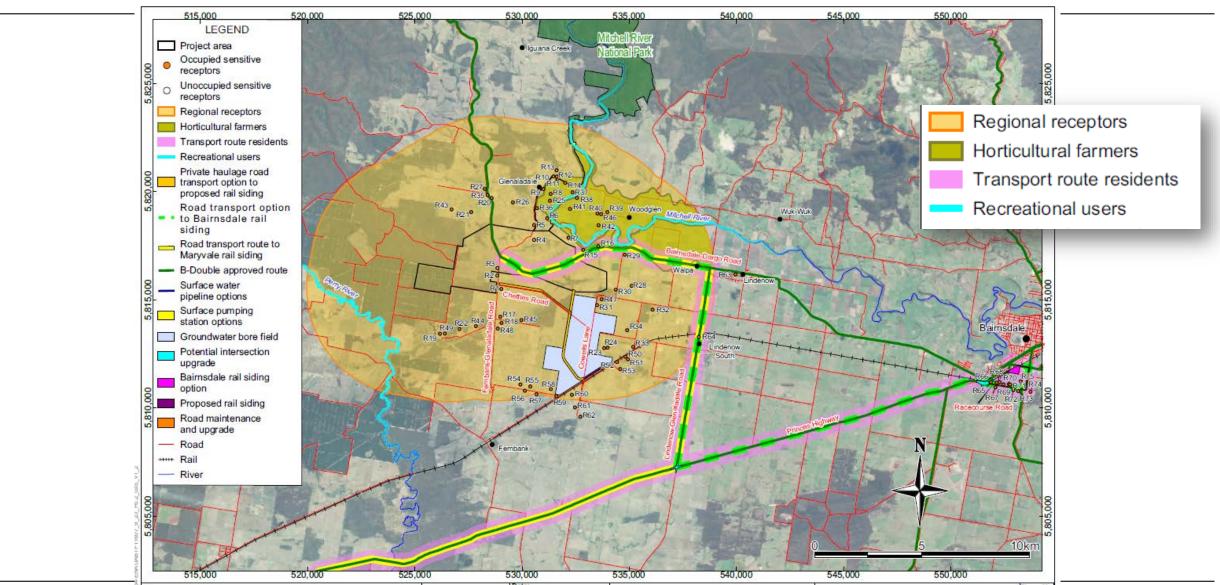

Related studies and data sources	Prepared by
Radiation Assessment Report	SGS Radiation Services, April 2020
Groundwater and Surface Water Impact Assessment	Coffey Services, June 2020
Stage Two Air Quality and Greenhouse Gas Assessment	Katestone Environmental. April 2020
Landform, Geology, and Soil Investigation	Landloch, April 2020
Horticultural Impact Assessment	RMCG, April 2020
Landscape Stability and Sediment Transport Regime Assessment	Water, April 2020
Land Use and Planning Impact Assessment	Matrix Planning, April 2020
Socioeconomic Impact Assessment	Coffey Services, May 2020
Geochem Testing of Fingerboard Tailings and Overburden - Preliminary Report	Environmental Geochemistry International, April 2020
Rainwater Tank Report	Ventia, October 2019

02 Development of the conceptual site model

Exposure pathway identification



- **Source**: Project area construction, operations, processes and related activities. Identification of chemicals of potential concern (COPC)
- **Transport pathways**: The fate and transport of contaminants once released from the source. This is usually via wind, water, sediments, soil, food etc.
- **Receptors**: The point of exposure will depend on where the receptor is located.
- **Exposure route**: Once the source-pathway-receptor linkages have been identified, the potential direct and indirect routes of exposures can be determined. The route of exposure describes how a contaminant enters the body either via ingestion, inhalation or dermal contact.


Conceptual site model: Potential receptors and exposure pathways

Receptor populations of concern

03 Outcomes of the baseline HHRA

Health baseline assessment - Air

Media	Contaminant	Relevant receptors in Off-site Areas	Average concentration	Maximum concentration	Relevant report
	PM ₁₀		Below criteria	Below criteria	
Fine particulate matter	PM _{2.5}		Below criteria	Below criteria	
	Respirable crystalline silica ⁽¹⁾	Regional residents	Below criteria	Below criteria	
	Metals		Below criteria	Below criteria	Air quality assessment: Katestone
	Radionuclides		No exce	edances	2020
Dust	Deposition		Below criteria	NA	
Exhaust gases	NO ₂ , SO ₂	Transport route residents	Below	criteria	
		Regional residents	Below	criteria	
Ambient air	Radiation	Transport route residents	Within background levels		Radiation assessment: SGS, 2020
		Regional residents			

^{1.} Measured as PM_{2.}

Health baseline assessment – Soil, crops and sediment

Media	Contaminant	Relevant receptors in Off-site Areas	Average concentration	Maximum concentration	Relevant report
Topsoil –	Metals	Regional residents Within average glo		eria	Soil assessment: Landloch, 2020
regional area	Radionuclides			lobal range	Radiation assessment: SGS, 2020
Crops	Radionuclides ⁽¹⁾	Horticultural farmers	Within global average intake range		Radiation assessment: SGS, 2020
Sediment	Metals	Recreational users	Below criteria		Sediment assessment: Water Technology, 2020

^{1.} Based on a quantitative assessment undertaken by SGS (2020)

A presentation to IAC May 2021

Health baseline assessment - Surface water, groundwater and tank water

Media	Contaminant	Relevant receptors in Off-site Areas	Average concentration	Maximum concentration	Relevant report	
Motolo		Regional residents Metals		4 exceedances (1)	Surface water assessment:	
Surface water	ivictals	Recreational users	Below criteria		Coffey, 2020	
Surface water	Dodionudidos	Regional residents	Below	criteria	Radiation assessment:	
	Radionuclides	Recreational users	Below criteria		SGS, 2020	
Harvested	Metals	Danianal vasidants	Below criteria		Ventia, 2019	
rainwater	Radionuclides	Regional residents	Below criteria			
	Metals	Regional residents	2 exceedance (2)	4 exceedances (3)	Groundwater assessment:	
	MELAIS	Recreational users	Below criteria 1 exceedance (4)		Coffey, 2020	
Groundwater		Regional residents	Below criteria		Radiation assessment: SGS, 2020	
	Radionuclides	Recreational users	Below criteria			

^{1.} Arsenic, chromium, lead and manganese.

^{2.} Manganese and nickel.

^{3.} Arsenic, cadmium, manganese and nickel.

^{4.} Nickel

Outcomes of the predicted HHRA

Predicted health assessment - Air

Media	Contaminant	Relevant receptors in Off-site Areas	Construction	Operations / Rehabilitation	Relevant report	
	PM ₁₀		required on days v conditions indicate	ment measures may be where meteorological a greater potential for migration.		
Fine particulate	PM _{2.5}		Below criteria	Below criteria		
matter	Respirable crystalline silica (1)	Regional residents	Below criteria	Below criteria	Air quality assessment: Katestone 2020	
	Metals		Below criteria	Below criteria	Additional air quality modelling:	
	Radionuclides		Low and	lacceptable	Katestone Feb 2021	
Dust	Deposition		Low and acceptable			
Exhaust gases	NO_2 , SO_2	Transport route residents	Negligible			
		Regional residents	Ne	gligible		
Ambient air	Radiation	Transport route residents	Negligible		Radiation assessment: SGS 2020	
			Negligible			

^{1.} Measured as PM_{2.}

Predicted health assessment – Soil, crops and sediment

Media	Contaminant	Relevant receptors in Off-site Areas	Construction	Operations / Rehabilitation	Relevant report
	Metals		Not evaluated	Not evaluated	Not applicable
Topsoil – regional area	Radionuclides	Regional residents	Not assessed	Low and acceptable post rehabilitation	Radiation assessment: SGS 2020
Crops	Radionuclides (1)	Horticultural farmers	Low and acceptable		Radiation assessment: SGS 2020

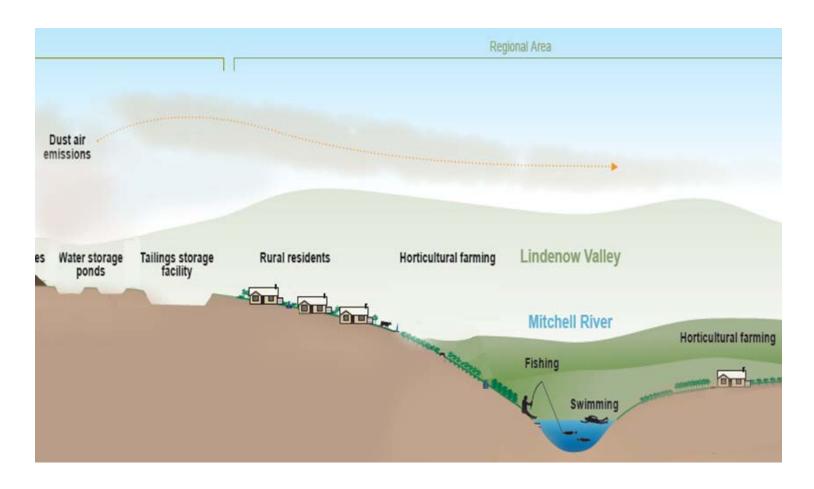
^{1.} Based on a quantitative assessment undertaken by SGS (2020)

Predicted health assessment – Surface water, groundwater and tank water

Media	Contaminant	Relevant receptors in Off-site Areas	Construction phase	Operations / Rehabilitation	Relevant report
	Metals	Regional residents	Low and	acceptable	Surface water assessment:
Surface water	IVICIAIS	Recreational users	Low and acceptable		Coffey 2020
Surface water	Dadianudidas	Regional residents	Low and	acceptable	Radiation assessment:
	Radionuclides		Low and acceptable		SGS 2020
Tankuuntar	Metals	Designal vasidants	Negligible I residents Negligible		HUDA roport: Coffou 2020
Tank water	Radionuclides	Regional residents			HHRA report: Coffey 2020
	Metals	Regional residents Low and acce		acceptable	Groundwater assessment:
		Recreational users	Low and	acceptable	Coffey 2020
Groundwater Ra	Radionuclides	Regional residents	Low and	acceptable	Radiation assessment:
			Recreational users	Low and	acceptable

05 Key issues

Sensitive receptors


Receptors were identified based on:

- The CSM and the potential transport pathways of contaminants released by the project activities
- Sensitive receptor settings were identified based on location.
 - Airborne contaminants assumed to be in higher concentrations closer to the source due to dispersion and fallout processes with distance.
- Sensitive receptors may include young children, older people and people with chronic health conditions.
- Young children considered to be the more sensitive given:
- Potential for greater intakes per body weight
- Potential for developmental health effects
- Present in rural residential, recreational and horticultural settings
- Exposure periods greater in a residential setting than in school, kindergarten or child care settings.

Technical Note: Metal/metalloids in dust particulates

- Selected sensitive receptors:
 - Young children in a residential
 - Adult worker in an agricultural setting
- Quantitative assessment of potential exposures associated with dust deposition on:
 - Crops
 - Livestock (beef and dairy cattle) pastures.
 - Soil
- Quantitative assessment of potential exposures associated with airborne dust

Dust fallout

Metals and metalloids in dust fallout:

- Rainwater tanks and dams
 - Quantitatively assessed based on conservative assumptions likely to overestimate concentrations in tank/dam water.
- Woodglen water storage dam
 - Treated via dissolved air floatation and filtration (DAFF) water treatment process before water is released to customers
- Crops and pasture
 - Radionuclides in soil and crops quantitatively addressed in the Radiation Assessment report.

Technical Note: Assessment of metal/metalloids in dust particulates

• Contaminants of potential concern

- Metals and metalloids identified in Air Quality modelling.

Toxicity assessment

- Classified as to carcinogenicity according to the NEPM process.
- Toxicity reference values were selected from NEPM or USEPA sources where available or extrapolated.
- Identified bioavailability adjustments and background exposures

Exposure assessment

- The exposure pathways quantitatively assessed are:
 - Consumption of beef and milk from livestock raised in the regional area, that may have ingested impacted pasture, soil or inhaled particulates associated with Project activities.
 - The deposition of dust on crops and soil associated with dust fallout, translocation via roots and the subsequent ingestion of crops by sensitive receptor populations.
 - Incidental ingestion of impacted soil as a result of dust deposition.
 - Inhalation of contaminants in airborne particulates.

Issues Identification

Data collection and evaluation

Toxicity assessment

Review qualitative and quantitative toxicity information Evaluate uncertainties

Exposure assessment

Identification of potential exposure pathways

- Tier 1 Health screening assessment
 - Comparison with appropriate screening criteria
- Tier 2 Health screening assessment
 - Quantitative evaluation using site specific inputs

Evaluate uncertainties

Risk Characterisation

Characterise potential for adverse health effects to occur Summarise risk information and evaluation Evaluate uncertainty

Risk Communication and Risk Management

Technical Note: Assessment of metal/metalloids in dust particulates

• Exposure assessment

- Point of exposure estimates:
 - Soil concentration at the end of mine lifetime
 - Contaminant of concern (COPC) concentration deposited on edible produce and pasture
 - COPC concentration via root translocation
 - Total concentration in edible crop or pasture
 - Estimation of chronic daily intakes via inhalation by cattle
 - Total concentration in animal product (beef or milk)
- Receptor estimation of chronic intakes of COPCs associated with:
 - incidental soil ingestion
 - consumption of local crops
 - ingestion locally raised cattle products (beef & dairy milk)
 - inhalation of respirable particulates

Technical Note: Assessment of metal/metalloids in dust particulates

Uncertainty assessment

- Toxicity reference values generally based on NOAEL, include safety factors.
- Chemical composition of the COPC relevant to site.
- Uptake factors and transfer factors.
- Exposure assumptions
 - ie assumes exposed to same air concentration for 8 hours/day, 365 days/year for over a 20–30 year period.
- Maximum COPC concentrations modelled.

Risk characterisation

- Potential health risks to receptor populations are considered to be low and acceptable where:
 - chronic exposures to individual contaminants are via multiple exposure pathways.
 - chronic exposures are via multiple exposure pathways and multiple COPCs.